论文标题

lattice qcd的中准双β衰减:长距离$π^{ - } \rightArrowπ^{+} e^{ - } e^{ - } e^{ - } $

Neutrinoless Double Beta Decay from Lattice QCD: The Long-Distance $π^{-} \rightarrow π^{+} e^{-} e^{-}$ Amplitude

论文作者

Detmold, W., Murphy, D. J.

论文摘要

中微子双β衰减(\(0νββ\))是一种假设的核衰减模式,具有重要意义。特别是,对这种衰变的观察将表明中微子是主要的粒子,而Lepton数量保护在本质上是侵犯的。关于\(0νββ\)衰减率与中微子质量的实验约束需要以非扰动核基质元件的形式进行理论输入,这些元素仍然难以可靠地计算。这项工作标志着提供一个通用晶格QCD框架的第一步,以计算长距离(0νββ\)矩阵元素,如果衰减是由光较大的majorana中微子介导的情况。相关形式主义是通过计算最简单的矩阵元素来开发然后测试的,该矩阵元素描述了一个非物理\(π^{ - } \rightarrowπ^{+} e^{ - } e^{ - } e^{ - } \)在一系列域壁壁式搭配上的过渡。然后,由此产生的晶格数据拟合到近代领先的手性扰动理论,从而使低能量不变的过渡速率的低能量常数完全控制,\(g_ν^{ππ}(μ= 770 \,\,\,\,\,\,\,\ Mathrm {mathrm {mev})= -10.78(12) stat}(51)_ {\ rm sys} \)。最后,讨论了计算更复杂过程的未来前景,例如现象学上重要的\(n^{0} n^{0} \ rightarrow p^{+} p^{+} p^{+} e^{ - } e^{ - } e^{ - } \)衰减。

Neutrinoless double beta decay (\( 0 νββ\)) is a hypothetical nuclear decay mode with important implications. In particular, observation of this decay would demonstrate that the neutrino is a Majorana particle and that lepton number conservation is violated in nature. Relating experimental constraints on \(0 νββ\) decay rates to the neutrino masses requires theoretical input in the form of non-perturbative nuclear matrix elements which remain difficult to calculate reliably. This work marks a first step toward providing a general lattice QCD framework for computing long-distance \(0 νββ\) matrix elements in the case where the decay is mediated by a light Majorana neutrino. The relevant formalism is developed and then tested by computing the simplest such matrix element describing an unphysical \( π^{-} \rightarrow π^{+} e^{-} e^{-} \) transition on a series of domain wall fermion ensembles. The resulting lattice data is then fit to next-to-leading-order chiral perturbation theory, allowing a fully-controlled extraction of the low energy constant governing the transition rate, \(g_ν^{ππ}(μ= 770 \,\, \mathrm{MeV}) = -10.78(12)_{\rm stat}(51)_{\rm sys}\). Finally, future prospects for calculations of more complicated processes, such as the phenomenologically important \(n^{0} n^{0} \rightarrow p^{+} p^{+} e^{-} e^{-}\) decay, are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源