论文标题

放射科医生级的covid-19使用CT扫描与细节胶囊网络检测

Radiologist-Level COVID-19 Detection Using CT Scans with Detail-Oriented Capsule Networks

论文作者

Mobiny, Aryan, Cicalese, Pietro Antonio, Zare, Samira, Yuan, Pengyu, Abavisani, Mohammadsajad, Wu, Carol C., Ahuja, Jitesh, de Groot, Patricia M., Van Nguyen, Hien

论文摘要

影像学图像为快速筛查和监测冠状病毒病2019(COVID-19)患者提供了另一种方法。这种方法受放射学专家短缺的限制,他们可以及时解释这些图像。在这一挑战的推动下,我们的论文提出了一种新颖的学习体系结构,称为“面向细节的胶囊网络”(DECAPS),以自动诊断计算机断层扫描(CT)扫描对COVID-19的自动诊断。我们的网络将胶囊网络的强度与几个旨在提高分类精度的架构改进相结合。首先,Decaps使用倒置的动态路由机制,该机制通过防止来自非描述性区域的信息传递来提高模型稳定性。其次,Decaps采用了Peekaboo培训程序,该程序使用了两阶段的补丁作物和删除策略来鼓励网络为每个目标概念生成激活图。然后,网络使用激活图专注于感兴趣的区域,并结合了数据的粗糙和细粒度表示。最后,我们使用基于条件生成对抗网络的数据增强方法来处理数据稀缺问题。我们的模型达到了84.3%的精度,91.5%的召回和ROC曲线下的96.1%面积,明显超过了最先进的方法。我们将Decaps模型的性能与三位经验丰富的,训练有素的胸部放射学家进行了比较,并表明该体系结构极大地胜过它们。尽管需要对较大数据集进行进一步的研究来确认这一发现,但我们的结果表明,诸如Decaps之类的体系结构可用于协助放射科医生进行CT扫描介导的COVID-19诊断。

Radiographic images offer an alternative method for the rapid screening and monitoring of Coronavirus Disease 2019 (COVID-19) patients. This approach is limited by the shortage of radiology experts who can provide a timely interpretation of these images. Motivated by this challenge, our paper proposes a novel learning architecture, called Detail-Oriented Capsule Networks (DECAPS), for the automatic diagnosis of COVID-19 from Computed Tomography (CT) scans. Our network combines the strength of Capsule Networks with several architecture improvements meant to boost classification accuracies. First, DECAPS uses an Inverted Dynamic Routing mechanism which increases model stability by preventing the passage of information from non-descriptive regions. Second, DECAPS employs a Peekaboo training procedure which uses a two-stage patch crop and drop strategy to encourage the network to generate activation maps for every target concept. The network then uses the activation maps to focus on regions of interest and combines both coarse and fine-grained representations of the data. Finally, we use a data augmentation method based on conditional generative adversarial networks to deal with the issue of data scarcity. Our model achieves 84.3% precision, 91.5% recall, and 96.1% area under the ROC curve, significantly outperforming state-of-the-art methods. We compare the performance of the DECAPS model with three experienced, well-trained thoracic radiologists and show that the architecture significantly outperforms them. While further studies on larger datasets are required to confirm this finding, our results imply that architectures like DECAPS can be used to assist radiologists in the CT scan mediated diagnosis of COVID-19.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源