论文标题
Dirichlet扩散过程的有条件经验度量的Wasserstein距离的精确极限
Precise Limit in Wasserstein Distance for Conditional Empirical Measures of Dirichlet Diffusion Processes
论文作者
论文摘要
令$ m $为$ d $二维连接的紧凑型riemannian歧管,带有边界$ \ partial m $,让$ v \ in c^2(m)$中的$ v \,使$μ(dx):= = e^{v(x)d x $是概率度量,让$ x_t $是$ x_t $ by $ x_t $ by $ l: $τ:= \ inf \ {t \ ge 0:x_t \ in \ partial m \} $。考虑条件经验措施 $μ_t^ν:= \ MATHBB E^ν\ big(\ frac 1 t \ int_0^tδ_{x_s} d s \ big | t <| t <τ\ big)$,用于初始分布过程$ν$,因此然后$ \ lim_ {t \ to \ infty} \ big \ { \ frac {\ {ν(ϕ_0)μ(ϕ_m)+μ(ϕ_0)ν(ϕ_m)\}^2} {(λ_m-λ_0)^3},$ n $ n $ n $ = = = \ int_mf {d} $ $μ_0:= ϕ_0^2μ$,$ \ {ϕ_m \} _ {m \ ge 0} $是$ -l $ in $ l^2(μ)$ in dirichlet边界,$ -l $ in $ -l $, $ \ {λ_m\} _ {m \ ge 0} $是相应的dirichlet eigenvalues,而$ \ mathbb w_2 $是$ l^2 $ -WASSERSTEIN距离,由Riemannian Metric引起的距离。
Let $M$ be a $d$-dimensional connected compact Riemannian manifold with boundary $\partial M$, let $V\in C^2(M)$ such that $μ(dx):=e^{V(x)} d x$ is a probability measure, and let $X_t$ be the diffusion process generated by $L:=Δ+\nabla V$ with $τ:=\inf\{t\ge 0: X_t\in\partial M\}$. Consider the conditional empirical measure $μ_t^ν:= \mathbb E^ν\big(\frac 1 t \int_0^t δ_{X_s}d s\big|t<τ\big)$ for the diffusion process with initial distribution $ν$ such that $ν(\partial M)<1$. Then $$\lim_{t\to\infty} \big\{t\mathbb W_2(μ_t^ν,μ_0)\big\}^2 = \frac 1 {\{μ(ϕ_0)ν(ϕ_0)\}^2} \sum_{m=1}^\infty \frac{\{ν(ϕ_0)μ(ϕ_m)+ μ(ϕ_0) ν(ϕ_m)\}^2}{(λ_m-λ_0)^3},$$ where $ν(f):=\int_Mf {d} ν$ for a measure $ν$ and $f\in L^1(ν)$, $μ_0:=ϕ_0^2μ$, $\{ϕ_m\}_{m\ge 0}$ is the eigenbasis of $-L$ in $L^2(μ)$ with the Dirichlet boundary, $\{λ_m\}_{m\ge 0}$ are the corresponding Dirichlet eigenvalues, and $\mathbb W_2$ is the $L^2$-Wasserstein distance induced by the Riemannian metric.