论文标题

数字拓扑中的lefschetz数字和固定点理论

Lefschetz numbers and fixed point theory in digital topology

论文作者

Abdullahi, Muhammad Sirajo, Kumam, Poom, Staecker, P. Christopher

论文摘要

在本文中,我们在数字图像拓扑中介绍了两种类型的lefschetz数字。也就是说,Simplicial Lefschetz编号$ L(F)$和Cubical Lefschetz编号$ \ bar l(f)$。我们表明$ l(f)$是一个强大的同型不变性,并且具有近似的固定点定理。另一方面,我们确定$ \ bar l(f)$是同质的不变性,并且具有$ n $ app的固定点结果。从本质上讲,这意味着$ l(f)$的固定点结果比$ \ bar l(f)$要好,而$ \ bar l(f)$的同质副本不变性优于$ l(f)$。与经典拓扑不同,这些Lefschetz数字为近似固定点的数量提供了下限。最后,我们构建了一些说明性的例子来证明我们的结果。

In this paper, we present two types of Lefschetz numbers in the topology of digital images. Namely, the simplicial Lefschetz number $L(f)$ and the cubical Lefschetz number $\bar L(f)$. We show that $L(f)$ is a strong homotopy invariant and has an approximate fixed point theorem. On the other hand, we establish that $\bar L(f)$ is a homotopy invariant and has an $n$-approximate fixed point result. In essence, this means that the fixed point result for $L(f)$ is better than that for $\bar L(f)$ while the homotopy invariance of $\bar L(f)$ is better than that of $L(f)$. Unlike in classical topology, these Lefschetz numbers give lower bounds for the number of approximate fixed points. Finally, we construct some illustrative examples to demonstrate our results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源