论文标题
旧是黄金:重新定义对手学习的一级分类器培训范式
Old is Gold: Redefining the Adversarially Learned One-Class Classifier Training Paradigm
论文作者
论文摘要
一种流行的异常检测方法是使用对抗网络的发电机来制定输入的重建损失的异常分数。由于很少发生异常,因此优化此类网络可能是一项麻烦的任务。另一种可能的方法是使用发电机和鉴别器进行异常检测。但是,归因于对抗训练的参与,这种模型通常是不稳定的,以使性能随着每个训练步骤而急剧波动。在这项研究中,我们提出了一个框架,该框架有效地在广泛的训练步骤中产生稳定的结果,并使我们能够同时使用对抗模型的发电机和歧视者来进行有效且可靠的异常检测。我们的方法将歧视者的基本作用从识别真实和虚假数据转化为区分良好质量和不良质量的重建。为此,我们通过采用当前的发电机来为高质量重建的培训示例准备,而质量差的例子是利用同一发电机的旧状态获得的。这样,歧视者学会了检测经常出现在异常输入重建中的细微扭曲。在CalTech-256和MNIST图像数据集上进行的广泛实验以发现出色的结果。此外,在用于异常检测的UCSD PED2视频数据集上,我们的模型达到了98.1%的帧级AUC,超过了最新的最新方法。
A popular method for anomaly detection is to use the generator of an adversarial network to formulate anomaly scores over reconstruction loss of input. Due to the rare occurrence of anomalies, optimizing such networks can be a cumbersome task. Another possible approach is to use both generator and discriminator for anomaly detection. However, attributed to the involvement of adversarial training, this model is often unstable in a way that the performance fluctuates drastically with each training step. In this study, we propose a framework that effectively generates stable results across a wide range of training steps and allows us to use both the generator and the discriminator of an adversarial model for efficient and robust anomaly detection. Our approach transforms the fundamental role of a discriminator from identifying real and fake data to distinguishing between good and bad quality reconstructions. To this end, we prepare training examples for the good quality reconstruction by employing the current generator, whereas poor quality examples are obtained by utilizing an old state of the same generator. This way, the discriminator learns to detect subtle distortions that often appear in reconstructions of the anomaly inputs. Extensive experiments performed on Caltech-256 and MNIST image datasets for novelty detection show superior results. Furthermore, on UCSD Ped2 video dataset for anomaly detection, our model achieves a frame-level AUC of 98.1%, surpassing recent state-of-the-art methods.