论文标题
磁性绝缘体中自旋波传输和干扰的磁共振成像
Magnetic resonance imaging of spin-wave transport and interference in a magnetic insulator
论文作者
论文摘要
自旋波 - 磁性材料的基本激发 - 是低耗散信息处理的主要候选信号载体。能够成像相干自旋传输对于开发基于干扰的自旋波器设备至关重要。我们引入了一个平台,用于基于钻石中电子旋转的磁共振成像探测相干自旋波。为了关注薄膜磁绝缘子,我们量化了自旋波振幅,可视化分散体并展示了自旋波数据包的时间域测量值。我们使用我们的平台研究自旋波干扰,揭示了具有频率控制的数值孔的单向,自动对焦的自旋波模式。理论分析解释了手性自旋波激发和与传感器旋转的杂散耦合方面的模式。这些结果为探测原子薄磁体中的自旋波的方式铺平了道路,即使在不透明的材料之间嵌入。
Spin waves - the elementary excitations of magnetic materials - are prime candidate signal carriers for low dissipation information processing. Being able to image coherent spin-wave transport is crucial for developing interference-based spin-wave devices. We introduce a platform for probing coherent spin waves based on magnetic resonance imaging with electron spins in diamond. Focusing on a thin-film magnetic insulator, we quantify spin-wave amplitudes, visualize the dispersion, and demonstrate time-domain measurements of spin-wave packets. We use our platform to study spin-wave interference, revealing uni-directional, autofocused spin-wave patterns with frequency-controlled numerical apertures. A theoretical analysis explains the patterns in terms of chiral spin-wave excitation and stray-field coupling to the sensor spins. These results pave the way for probing spin waves in atomically thin magnets, even when embedded between opaque materials.