论文标题

深度生成图像的质量预测

Quality Prediction on Deep Generative Images

论文作者

Ko, Hyunsuk, Lee, Dae Yeol, Cho, Seunghyun, Bovik, Alan C.

论文摘要

近年来,深层神经网络已用于包括图像生成在内的各种应用中。特别是,生成的对抗网络(GAN)能够在诸如图像压缩等任务的一部分中产生高度逼真的图片。与标准压缩一样,希望能够自动评估生成图像的感知质量以监视和控制编码过程。但是,现有的图像质量算法对GAN生成的内容无效,尤其是在纹理区域和高压下。在这里,我们为生成图像提出了一个新的基于自然性的图像质量预测指标。我们的新gan图片质量预测变量是使用基于结构相似性特征和统计相似性测量的多阶段平行增强系统构建的。为了实现模型开发和测试,我们还构建了一个主观的GAN图像质量数据库,其中包含(扭曲)GAN图像,并收集了对它们的人类意见。我们的实验结果表明,我们提出的GAN IQA模型在生成图像数据集以及传统的图像质量数据集上提供了卓越的质量预测。

In recent years, deep neural networks have been utilized in a wide variety of applications including image generation. In particular, generative adversarial networks (GANs) are able to produce highly realistic pictures as part of tasks such as image compression. As with standard compression, it is desirable to be able to automatically assess the perceptual quality of generative images to monitor and control the encode process. However, existing image quality algorithms are ineffective on GAN generated content, especially on textured regions and at high compressions. Here we propose a new naturalness-based image quality predictor for generative images. Our new GAN picture quality predictor is built using a multi-stage parallel boosting system based on structural similarity features and measurements of statistical similarity. To enable model development and testing, we also constructed a subjective GAN image quality database containing (distorted) GAN images and collected human opinions of them. Our experimental results indicate that our proposed GAN IQA model delivers superior quality predictions on the generative image datasets, as well as on traditional image quality datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源