论文标题
使用卷积神经网络从X射线照相kellgren-Lawrence量表上膝关节骨关节炎的自动分级
Automatic Grading of Knee Osteoarthritis on the Kellgren-Lawrence Scale from Radiographs Using Convolutional Neural Networks
论文作者
论文摘要
使用5点Kellgren-lawrence(KL)等级对膝关节骨关节炎的严重程度进行分级,其中健康的膝盖分配了0级,随后的1-4年级代表了苦难的严重程度的增加。尽管近年来已经提出了几种方法来开发可以自动从给定的X光片预测KL等级的模型,但大多数模型都是在非印度采购的数据集上开发和评估的。这些模型无法在印度患者的X光片上表现良好。在本文中,我们提出了一种使用卷积神经网络的新方法,以在KL量表上自动对膝关节射线照相进行评分。我们的方法在两个连接的阶段工作:在第一阶段,对象检测模型将单个膝盖从图像的其余部分中分离出来;在第二阶段,回归模型会自动按KL量表分别分别对每个膝关节进行分级。我们使用公开可用的骨关节炎计划(OAI)数据集训练我们的模型,并证明在将模型从私立医院进行评估之前对模型进行了微调,从而显着将平均绝对错误从1.09(95%CI:1.03-1.15)提高到0.28(95%CI:95%CI:0.25-55-0.32)。此外,我们比较为同一任务构建的分类和回归模型,并证明回归优于分类。
The severity of knee osteoarthritis is graded using the 5-point Kellgren-Lawrence (KL) scale where healthy knees are assigned grade 0, and the subsequent grades 1-4 represent increasing severity of the affliction. Although several methods have been proposed in recent years to develop models that can automatically predict the KL grade from a given radiograph, most models have been developed and evaluated on datasets not sourced from India. These models fail to perform well on the radiographs of Indian patients. In this paper, we propose a novel method using convolutional neural networks to automatically grade knee radiographs on the KL scale. Our method works in two connected stages: in the first stage, an object detection model segments individual knees from the rest of the image; in the second stage, a regression model automatically grades each knee separately on the KL scale. We train our model using the publicly available Osteoarthritis Initiative (OAI) dataset and demonstrate that fine-tuning the model before evaluating it on a dataset from a private hospital significantly improves the mean absolute error from 1.09 (95% CI: 1.03-1.15) to 0.28 (95% CI: 0.25-0.32). Additionally, we compare classification and regression models built for the same task and demonstrate that regression outperforms classification.