论文标题
重新识别的双嵌入扩展
Dual Embedding Expansion for Vehicle Re-identification
论文作者
论文摘要
车辆重新识别在运输基础设施和交通流量的管理中起着至关重要的作用。但是,由于外观,环境和实例相关因素的观点变化很大,这是一项艰巨的任务。现代系统部署CNN,从每个车辆实例的图像中产生独特的表示。大多数工作着重于利用新的损失和网络体系结构来提高这些表示形式的描述性。相比之下,我们的工作集中于重新排列和嵌入扩展技术。我们提出了一种有效的方法,用于在各种尺度上组合多个模型的输出,同时利用曲目和邻居信息,称为双嵌入扩展(DEX)。此外,对几种常见图像检索技术进行了比较研究,在车辆重新ID的背景下进行了。我们的系统在2020年NVIDIA AI City Challenge中产生竞争性能,并取得令人鼓舞的结果。我们证明,当与其他重新排列技术结合使用时,DEX可以产生更大的增益,而无需任何其他属性标签或手动监督。
Vehicle re-identification plays a crucial role in the management of transportation infrastructure and traffic flow. However, this is a challenging task due to the large view-point variations in appearance, environmental and instance-related factors. Modern systems deploy CNNs to produce unique representations from the images of each vehicle instance. Most work focuses on leveraging new losses and network architectures to improve the descriptiveness of these representations. In contrast, our work concentrates on re-ranking and embedding expansion techniques. We propose an efficient approach for combining the outputs of multiple models at various scales while exploiting tracklet and neighbor information, called dual embedding expansion (DEx). Additionally, a comparative study of several common image retrieval techniques is presented in the context of vehicle re-ID. Our system yields competitive performance in the 2020 NVIDIA AI City Challenge with promising results. We demonstrate that DEx when combined with other re-ranking techniques, can produce an even larger gain without any additional attribute labels or manual supervision.