论文标题
晶格施瓦茨·科特维格·德里斯方程的有限属解决方案
Finite genus solutions to the lattice Schwarzian Korteweg-de Vries equation
论文作者
论文摘要
基于与衍生型Schwarzian Korteweg-de Vries(SKDV)方程相关的可集成的汉密尔顿系统,这是一种用于晶状体SKDV(LSKDV)方程的新型离散LAX对,由两种darboux转换副本给出,可用于得出可集成的符号符号通讯。通过Riemann Surface方法计算了LIOUVILL-ARNOLD定理的离散版本的有限属溶液。
Based on integrable Hamiltonian systems related to the derivative Schwarzian Korteweg-de Vries (SKdV) equation, a novel discrete Lax pair for the lattice SKdV (lSKdV) equation is given by two copies of a Darboux transformation which can be used to derive an integrable symplectic correspondence. Resorting to the discrete version of Liouville-Arnold theorem, finite genus solutions to the lSKdV equation are calculated through Riemann surface method.