论文标题
通过将断裂视为拓扑缺陷,脆性与延性故障之间的可能联系
A possible link between brittle and ductile failure by viewing fracture as a topological defect
论文作者
论文摘要
从原则上描述了裂缝的连续性模型,该模型原则上描述了裂纹和空隙的任意分布与没有断裂标准的不断发展的拓扑结构的传播和相互作用。它涉及裂纹tips的“运动定律”,主要是一种运动学后果,再加上热力学。基本运动学使裂纹尖端赋予拓扑费。这允许对电荷的运动学保护定律的关联,从而导致裂纹尖端场的基本进化方程,进而为裂纹场而言。矢量裂纹场以物理上合理的各向异性方式降低了弹性模量。该保护定律的数学结构允许在裂纹场演化中具有标量场的加性“自由”梯度。我们将这种自然出现的标量场与延性故障建模产生的孔隙率相关联。因此,孔隙率梯度会影响裂纹场的演变,然后自然会降解弹性模量,并且通过这种基本机制,孔隙率增长的空间梯度会影响材料的应变密度和压力承受能力 - 并且作为与基本的Kinematics相关的材料的压力,并将其介绍为长度的基础。这项工作的关键假设是脆性断裂是能量驱动的,而延性裂缝是应力驱动的。在总体剪切负荷下,平均应力消失或压缩,剪切应变能仍然可以驱动延性材料中的剪切骨折。
A continuum model of fracture that describes, in principle, the propagation and interaction of arbitrary distributions of cracks and voids with evolving topology without a fracture criterion is developed. It involves a 'law of motion' for crack-tips, primarily as a kinematical consequence coupled with thermodynamics. Fundamental kinematics endows the crack-tip with a topological charge. This allows the association of a kinematical conservation law for the charge, resulting in a fundamental evolution equation for the crack-tip field, and in turn the crack field. The vectorial crack field degrades the elastic modulus in a physically justified anisotropic manner. The mathematical structure of this conservation law allows an additive 'free' gradient of a scalar field in the evolution of the crack field. We associate this naturally emerging scalar field with the porosity that arises in the modeling of ductile failure. Thus, porosity-rate gradients affect the evolution of the crack-field which, then, naturally degrades the elastic modulus, and it is through this fundamental mechanism that spatial gradients in porosity growth affects the strain-energy density and stress carrying capacity of the material - and, as a dimensional consequence related to fundamental kinematics, introduces a length-scale in the model. The key hypothesis of this work is that brittle fracture is energy-driven while ductile fracture is stress-driven; under overall shear loadings where mean stress vanishes or is compressive, shear strain energy can still drive shear fracture in ductile materials.