论文标题

辐射源检测的粒子过滤收敛结果

Particle Filtering Convergence Results for Radiation Source Detection

论文作者

Cook, Jared, Smith, Ralph C., Ramirez, Camila, Rao, Nageswara S. V.

论文摘要

最近的研究表明,在某些假设下,粒子过滤方法的收敛性较弱 - 分布的收敛性。但是,粒子过滤方法的某些应用,例如辐射源定位问题,可以证明具有以下意义的扩展收敛性。使用统计上独立的测量值和不取决于状态空间的测量过程的假设,我们证明了后验的收敛及其通过粒子滤波算法到表征源位置的真实dirac分布的近似值。我们设计了一种采样重要性重采样(SIR)过滤器,以使用传感器网络检测和定位辐射源。为了评估该粒子过滤器的有效性,我们使用IT来使用智能辐射传感器系统(IRSS)测试的两个实验开放场数据集解决源定位问题,并使用射线追踪模型进行了数值模拟的城市域数据。然后,我们证明估计值与状态后概率密度函数的理论收敛性。

Recent research has shown a weak convergence - convergence in distribution - of particle filtering methods under certain assumptions. However, some applications of particle filtering methods, such as radiation source localization problems, can be shown to have an extended convergence in the following sense. Using the assumptions of statistically independent measurements and a measurement process that does not depend on the state space, we prove the convergence of the posterior and its approximation by the particle filtering algorithm to the true Dirac distribution characterizing the source location. We design a Sampling Importance Resampling (SIR) filter to detect and locate a radiation source using a network of sensors. To numerically assess the effectiveness of this particle filter we employ it to solve a source localization problem using both experimental open field data sets from Intelligent Radiation Sensor Systems (IRSS) tests and numerically simulated urban domain data using a ray-tracing model. We then prove the theoretical convergence of the estimate to the state posterior probability density function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源