论文标题
局部变换的代数和几何特性
Algebraic and geometric properties of local transformations
论文作者
论文摘要
物理系统的某些属性可以从其相关性来表征。在该框架中,子系统被视为抽象设备,这些设备将测量设置作为输入,并产生测量结果作为输出。用于描述这些输入和输出的标签惯例不会影响物理。通过重新布线设备的输入和输出端口,可以轻松实现重新标记。但是,通过使用输入和输出的相关预处理和后处理,可以实现更一般的操作类别。与重新标记相反,其中一些操作不可逆转地丢失了有关基础设备的信息。其他操作是可逆的,但会修改输入和/或输出的基数。在这项工作中,我们将一组确定性的局部图列为满足两个等效构建的一个:因果关系的操作定义,以及一个公理的定义,让人联想到量子的定义完全积极的痕量保留图。然后,我们研究该集合的代数特性。令人惊讶的是,对这些基本属性的研究具有深刻而实用的应用。首先,这些转换的不变子空间直接将相关/贝尔不等式的空间分解为非信号,信号传导和归一化组件。这会影响钟和因果不平等的分类,以及在转向场景中的组合/证人的建设。其次,左右可逆的确定性局部操作提供了Pironio提出的举起的操作概括[J.数学。 Phys。,46(6):062112(2005)]。不仅可以解除贝尔本地,而且还可以解除因果不平等;升降机还适用于各种情况下的相关盒。
Some properties of physical systems can be characterized from their correlations. In that framework, subsystems are viewed as abstract devices that receive measurement settings as inputs and produce measurement outcomes as outputs. The labeling convention used to describe these inputs and outputs does not affect the physics; and relabelings are easily implemented by rewiring the input and output ports of the devices. However, a more general class of operations can be achieved by using correlated preprocessing and postprocessing of the inputs and outputs. In contrast to relabelings, some of these operations irreversibly lose information about the underlying device. Other operations are reversible, but modify the number of cardinality of inputs and/or outputs. In this work, we single out the set of deterministic local maps as the one satisfying two equivalent constructions: an operational definition from causality, and an axiomatic definition reminiscent of the definition of quantum completely positive trace-preserving maps. We then study the algebraic properties of that set. Surprisingly, the study of these fundamental properties has deep and practical applications. First, the invariant subspaces of these transformations directly decompose the space of correlations/Bell inequalities into nonsignaling, signaling and normalization components. This impacts the classification of Bell and causal inequalities, and the construction of assemblages/witnesses in steering scenarios. Second, the left and right invertible deterministic local operations provide an operational generalization of the liftings introduced by Pironio [J. Math. Phys., 46(6):062112 (2005)]. Not only Bell-local, but also causal inequalities can be lifted; liftings also apply to correlation boxes in a variety of scenarios.