论文标题

在遗传图课中找到大型$ h $ - 可油的子图

Finding large $H$-colorable subgraphs in hereditary graph classes

论文作者

Chudnovsky, Maria, King, Jason, Pilipczuk, Michał, Rzążewski, Paweł, Spirkl, Sophie

论文摘要

我们研究\ textsc {max partial $ h $ -o-coloring}问题:给定图形$ g $,找到最大的$ g $ $ g $的子图,该子$ G $将同构为$ h $,其中$ h $是无循环的固定图案图。请注意,当$ h $是$ k $顶点上的完整图时,问题就会减少到找到最大的$ k $ - 颜色的子图,对于$ k = 2 $,它是等效的(通过补充)到\ textsc {奇数周期横向}。 我们证明,对于每个固定的图案图$ h $无循环,\ textsc {max partial $ h $ - 彩色}可以解决: $ \ bullet $ in $ \ {p_5,f \} $ - 多项式时间中的免费图形,每当$ f $是阈值图; $ \ bullet $ in $ \ {p_5,\ textrm {bull} \} $ - 多项式时间中的免费图形; $ \ bullet $ in $ p_5 $ -free graphs in Time $ n^{\ Mathcal {o}(ω(g))} $; $ \ bullet $ in $ \ {p_6,\ textrm {1-subdivided claw} \} $ - 时间$ n^{\ Mathcal {o}(ω(g)^3)} $。 在这里,$ n $是输入图$ g $的顶点,$ω(g)$是〜$ g $中一个集团的最大大小。 Furthermore, combining the mentioned algorithms for $P_5$-free and for $\{P_6,\textrm{1-subdivided claw}\}$-free graphs with a simple branching procedure, we obtain subexponential-time algorithms for \textsc{Max Partial $H$-Coloring} in these classes of graphs.最后,我们表明,即使是\ textsc {max partial $ h $ - 颜色}的受限制变体,如果我们允许在$ h $上进行循环,则在被考虑的子类中,在被考虑的子类中很难。

We study the \textsc{Max Partial $H$-Coloring} problem: given a graph $G$, find the largest induced subgraph of $G$ that admits a homomorphism into $H$, where $H$ is a fixed pattern graph without loops. Note that when $H$ is a complete graph on $k$ vertices, the problem reduces to finding the largest induced $k$-colorable subgraph, which for $k=2$ is equivalent (by complementation) to \textsc{Odd Cycle Transversal}. We prove that for every fixed pattern graph $H$ without loops, \textsc{Max Partial $H$-Coloring} can be solved: $\bullet$ in $\{P_5,F\}$-free graphs in polynomial time, whenever $F$ is a threshold graph; $\bullet$ in $\{P_5,\textrm{bull}\}$-free graphs in polynomial time; $\bullet$ in $P_5$-free graphs in time $n^{\mathcal{O}(ω(G))}$; $\bullet$ in $\{P_6,\textrm{1-subdivided claw}\}$-free graphs in time $n^{\mathcal{O}(ω(G)^3)}$. Here, $n$ is the number of vertices of the input graph $G$ and $ω(G)$ is the maximum size of a clique in~$G$. Furthermore, combining the mentioned algorithms for $P_5$-free and for $\{P_6,\textrm{1-subdivided claw}\}$-free graphs with a simple branching procedure, we obtain subexponential-time algorithms for \textsc{Max Partial $H$-Coloring} in these classes of graphs. Finally, we show that even a restricted variant of \textsc{Max Partial $H$-Coloring} is $\mathsf{NP}$-hard in the considered subclasses of $P_5$-free graphs, if we allow loops on $H$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源