论文标题
$ k \toππ$从标准模型中的直接CP违规和$ΔI= 1/2 $规则
Direct CP violation and the $ΔI=1/2$ rule in $K\toππ$ decay from the Standard Model
论文作者
论文摘要
我们提出了$ΔI= 1/2 $,$ k \toππ$衰减振幅$ a_0 $和$ \ varepsilon' $的晶格QCD计算,这是$ k \toπ$衰减中直接cp-violation'$的度量,从而改善了我们的2015年数量计算。两种计算均在$ 32^3 \ times 64 $晶格上使用物理运动学进行,其反晶格间距为$ a^{ - 1} = 1.3784(68)$ gev。但是,当前的计算包括统计数据和大量技术改进的近四倍,使我们可以更可靠地隔离$ππ$地面状态,并更准确地将晶格运营商与标准模型中定义的操作员联系起来。我们发现$ {\ rm re}(a_0)= 2.99(0.32)(0.59)\ times 10^{ - 7} $ gev和$ {\ rm im}(a_0)= - 6.98(0.62)(0.62)(0.62)(1.44)(1.44)\ times 10^{ - 11} $ gev,属于统计学的属性和系统。前者与实验结果$ {\ rm re}(a_0)= 3.3201(18)\ times 10^{ - 7} $ GEV非常吻合。 These results for $A_0$ can be combined with our earlier lattice calculation of $A_2$ to obtain ${\rm Re}(\varepsilon'/\varepsilon)=21.7(2.6)(6.2)(5.0) \times 10^{-4}$, where the third error represents omitted isospin breaking effects, and Re$(A_0)$/Re$(A_2) = 19.9(2.3)(4.4)$。第一个与$ {\ rm re}的实验结果非常吻合(\ varepsilon'/\ varepsilon)= 16.6(2.3)\ times 10^{ - 4} $。第二个比例与观察到的比率RE $(A_0)/$ RE $(A_2)= 22.45(6)$的比较,演示了此“ $ΔI= 1/2 $ rule”的标准模型来源。
We present a lattice QCD calculation of the $ΔI=1/2$, $K\toππ$ decay amplitude $A_0$ and $\varepsilon'$, the measure of direct CP-violation in $K\toππ$ decay, improving our 2015 calculation of these quantities. Both calculations were performed with physical kinematics on a $32^3\times 64$ lattice with an inverse lattice spacing of $a^{-1}=1.3784(68)$ GeV. However, the current calculation includes nearly four times the statistics and numerous technical improvements allowing us to more reliably isolate the $ππ$ ground-state and more accurately relate the lattice operators to those defined in the Standard Model. We find ${\rm Re}(A_0)=2.99(0.32)(0.59)\times 10^{-7}$ GeV and ${\rm Im}(A_0)=-6.98(0.62)(1.44)\times 10^{-11}$ GeV, where the errors are statistical and systematic, respectively. The former agrees well with the experimental result ${\rm Re}(A_0)=3.3201(18)\times 10^{-7}$ GeV. These results for $A_0$ can be combined with our earlier lattice calculation of $A_2$ to obtain ${\rm Re}(\varepsilon'/\varepsilon)=21.7(2.6)(6.2)(5.0) \times 10^{-4}$, where the third error represents omitted isospin breaking effects, and Re$(A_0)$/Re$(A_2) = 19.9(2.3)(4.4)$. The first agrees well with the experimental result of ${\rm Re}(\varepsilon'/\varepsilon)=16.6(2.3)\times 10^{-4}$. A comparison of the second with the observed ratio Re$(A_0)/$Re$(A_2) = 22.45(6)$, demonstrates the Standard Model origin of this "$ΔI = 1/2$ rule" enhancement.