论文标题

关于非精美的进化算法优化适应性功能的高原功能

On Non-Elitist Evolutionary Algorithms Optimizing Fitness Functions with a Plateau

论文作者

Eremeev, Anton V.

论文摘要

我们考虑到非精英进化算法(EAS)的预期运行时间,当它们被应用于具有第二好的健身量的适应性功能的家族,在半径radius r的锤子球中围绕着独特的全球最佳最佳。一方面,使用基于级别的定理,我们基于无偏突变,尤其是在皮特突变的某些非私人EA模式的预期运行时获得多项式上限。另一方面,我们表明,如果比特突变与突变概率的标准设置一起使用,则具有适应性的EA是效率低下的。

We consider the expected runtime of non-elitist evolutionary algorithms (EAs), when they are applied to a family of fitness functions with a plateau of second-best fitness in a Hamming ball of radius r around a unique global optimum. On one hand, using the level-based theorems, we obtain polynomial upper bounds on the expected runtime for some modes of non-elitist EA based on unbiased mutation and the bitwise mutation in particular. On the other hand, we show that the EA with fitness proportionate selection is inefficient if the bitwise mutation is used with the standard settings of mutation probability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源