论文标题
一个数字分配到算术进程中的完整解决方案
A complete solution of the partition of a number into arithmetic progressions
论文作者
论文摘要
我们解决了一个正整数$ n $的分区的集合$ \ textrm {ap}(n)$的枚举,其中无需零件序列形成了算术进程。特别是,我们建立了一个以$ n $ $ n $的积极整数的非抵押算术进程数量的公式。我们还提出了一种明确的方法来计算$ \ textrm {ap}(n)$的所有分区。
We solve the enumeration of the set $\textrm{AP}(n)$ of partitions of a positive integer $n$ in which the nondecreasing sequence of parts forms an arithmetic progression. In particular, we establish a formula for the number of nondecreasing arithmetic progressions of positive integers with sum $n$. We also present an explicit method to calculate all the partitions of $\textrm{AP}(n)$.