论文标题

有效的光环模型:创建物质功率谱和群集计数的物理和准确模型

The Effective Halo Model: Creating a Physical and Accurate Model of the Matter Power Spectrum and Cluster Counts

论文作者

Philcox, Oliver H. E., Spergel, David N., Villaescusa-Navarro, Francisco

论文摘要

我们基于Halo模型和摄动理论介绍了物质功率谱的物理动机模型。该模型在$ k = 0.02H \,\ mathrm {mpc}^{ - 1} $ to $ k = 1H \,\ mathrm {mpc}^{ - 1} $之间达到1 \%精度。我们的关键安萨兹(Ansatz)是光环的数量密度取决于在某些未知规模$ r $上过滤的非线性密度对比度。使用大规模结构的有效场理论来评估两个途径术语,我们获得了一个仅具有两个拟合参数的功率谱的模型:$ r $和有效的“声速”,该模型封装了小规模物理。这是在广泛的宇宙学上使用两种宇宙学模拟套件测试的,并且发现高度准确。由于其身体动机,统计数据可以很容易地扩展到功率范围之外。我们还得出了群集计数的一环协方差矩阵及其与物质功率谱的组合。与以前的模型相比,这可以使模拟更适合模拟,并包括用于超级样本效应的新模型,该模型通过单独的宇宙模拟进行了严格测试。在低红移时,我们发现了一个很大的($ \ sim 10 \%$)排除协方差,从而考虑了以前尚未建模的光晕的有限大小。这样的功率谱和协方差模型将使即将进行的大规模结构调查,重力透镜调查以及宇宙微波背景图降低到非线性尺度的联合分析。我们提供公开发布的Python代码。

We introduce a physically-motivated model of the matter power spectrum, based on the halo model and perturbation theory. This model achieves 1\% accuracy on all $k-$scales between $k=0.02h\,\mathrm{Mpc}^{-1}$ to $k=1h\,\mathrm{Mpc}^{-1}$. Our key ansatz is that the number density of halos depends on the non-linear density contrast filtered on some unknown scale $R$. Using the Effective Field Theory of Large Scale Structure to evaluate the two-halo term, we obtain a model for the power spectrum with only two fitting parameters: $R$ and the effective `sound speed', which encapsulates small-scale physics. This is tested with two suites of cosmological simulations across a broad range of cosmologies and found to be highly accurate. Due to its physical motivation, the statistics can be easily extended beyond the power spectrum; we additionally derive the one-loop covariance matrices of cluster counts and their combination with the matter power spectrum. This yields a significantly better fit to simulations than previous models, and includes a new model for super-sample effects, which is rigorously tested with separate universe simulations. At low redshift, we find a significant ($\sim 10\%$) exclusion covariance from accounting for the finite size of halos which has not previously been modeled. Such power spectrum and covariance models will enable joint analysis of upcoming large-scale structure surveys, gravitational lensing surveys and cosmic microwave background maps on scales down to the non-linear scale. We provide a publicly released Python code.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源