论文标题

几乎是reed - 毛刺代码达到随机错误的恒定速率

Almost-Reed--Muller Codes Achieve Constant Rates for Random Errors

论文作者

Abbe, Emmanuel, Hązła, Jan, Nachum, Ido

论文摘要

本文考虑了“ $δ$ - 最多的芦苇 - 毛刺代码”,即,除了$ d $的单个单位分数外,所有除$δ$分数外的线性代码所跨越。结果表明,对于任何$δ> 0 $和任何$ \ varepsilon> 0 $,都存在$δ$的家族 - 最多的芦苇 - 毛刺代码,可正确$ 1/2- \ varepsilon $随机错误,较高的可能性。对于精确的芦苇毛刺代码,类似的结果尚不清楚,代表了长期猜想的较弱版本,芦苇毛刺代码实现了随机错误的能力(Abbe-Shpilka-Wigderson STOC '15)。我们的方法是基于芦苇毛刺代码的最新极化结果,结合了组合方法,以在芦苇刺激码头之间建立不平等。

This paper considers '$δ$-almost Reed-Muller codes', i.e., linear codes spanned by evaluations of all but a $δ$ fraction of monomials of degree at most $d$. It is shown that for any $δ> 0$ and any $\varepsilon>0$, there exists a family of $δ$-almost Reed-Muller codes of constant rate that correct $1/2-\varepsilon$ fraction of random errors with high probability. For exact Reed-Muller codes, the analogous result is not known and represents a weaker version of the longstanding conjecture that Reed-Muller codes achieve capacity for random errors (Abbe-Shpilka-Wigderson STOC '15). Our approach is based on the recent polarization result for Reed-Muller codes, combined with a combinatorial approach to establishing inequalities between the Reed-Muller code entropies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源