论文标题
动态交易策略的波动性制度的结构聚类
Structural clustering of volatility regimes for dynamic trading strategies
论文作者
论文摘要
我们开发了一种新方法,通过将无监督的学习应用于其波动率结构,以找到非组织财务时间序列中的波动性制度数量。我们使用更改点检测将时间序列分配到本地固定段,然后计算段分布之间的距离矩阵。通过优化例程将这些段聚类为学习数量的多个离散波动率制度。使用此框架,我们确定了金融指数,大型股票,交易所交易资金和货币对的波动性聚类结构。我们的方法克服了实施许多参数切换模型所必需的僵化假设,同时有效地将时间序列提炼成几种特征行为。我们的结果对这些时间序列进行了重大简化,并对波动性的先前行为进行了强烈的描述性分析。最后,我们创建并验证了一种动态交易策略,该策略了解了时间序列的当前分布及其过去制度之间的最佳匹配,从而在当前做出了避免风险的决策。
We develop a new method to find the number of volatility regimes in a nonstationary financial time series by applying unsupervised learning to its volatility structure. We use change point detection to partition a time series into locally stationary segments and then compute a distance matrix between segment distributions. The segments are clustered into a learned number of discrete volatility regimes via an optimization routine. Using this framework, we determine a volatility clustering structure for financial indices, large-cap equities, exchange-traded funds and currency pairs. Our method overcomes the rigid assumptions necessary to implement many parametric regime-switching models, while effectively distilling a time series into several characteristic behaviours. Our results provide significant simplification of these time series and a strong descriptive analysis of prior behaviours of volatility. Finally, we create and validate a dynamic trading strategy that learns the optimal match between the current distribution of a time series and its past regimes, thereby making online risk-avoidance decisions in the present.