论文标题

通过凸三角学的一系列具有二维控制的子鳍问题的极端问题

Extremals for a series of sub-Finsler problems with 2-dimensional control via convex trigonometry

论文作者

Ardentov, A. A., Lokutsievskiy, L. V., Sachkov, Yu. L.

论文摘要

我们考虑一系列具有二维控制的最佳控制问题,该问题位于任意凸紧套装$ω$中。当$ω$是单位光盘,但对任意$ω$几乎没有研究的情况时,对所考虑的问题进行了很好的研究。在通常的情况下,我们通过使用凸三角学的机械来使这些问题获得极端,这使我们能够以$ω$的形状独立地独立地进行操作。本文描述了(i)Lobachevsky双曲机上的Finsler问题中的大地测量学; (ii)所有单模型3D谎言组(SU(2),SL(2),SE(2),SE(2),SH(2))上的左行不相fins子问题; (iii)在具有$ω$给出距离功能的飞机上滚动球的问题; (iv)一系列“游艇问题”概括了Euler的弹性问题,Markov-Dubins问题,Reeds-Shepp问题以及SE上的新的副伊曼尼亚人问题(2); (v)平面动态运动问题。

We consider a series of optimal control problems with 2-dimensional control lying in an arbitrary convex compact set $Ω$. The considered problems are well studied for the case when $Ω$ is a unit disc, but barely studied for arbitrary $Ω$. We derive extremals to these problems in general case by using machinery of convex trigonometry, which allows us to do this identically and independently on the shape of $Ω$. The paper describes geodesics in (i) the Finsler problem on the Lobachevsky hyperbolic plane; (ii) left-invariant sub-Finsler problems on all unimodular 3D Lie groups (SU(2), SL(2), SE(2), SH(2)); (iii) the problem of rolling ball on a plane with distance function given by $Ω$; (iv) a series of "yacht problems" generalizing Euler's elastic problem, Markov-Dubins problem, Reeds-Shepp problem and a new sub-Riemannian problem on SE(2); and (v) the plane dynamic motion problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源