论文标题

足球中的轨迹和视频数据的小组活动检测

Group Activity Detection from Trajectory and Video Data in Soccer

论文作者

Sanford, Ryan, Gorji, Siavash, Hafemann, Luiz G., Pourbabaee, Bahareh, Javan, Mehrsan

论文摘要

可以通过使用视频数据或播放器和球轨迹数据来完成足球中的小组活动检测。在当前的足球活动数据集中,活动被标记为原子事件,而无需持续时间。鉴于最新的活动检测方法对于原子作用没有很好的定义,因此无法使用这些方法。在这项工作中,我们通过使用直观的非最大抑制过程和评估指标评估了活动识别模型检测此类事件的有效性。我们还考虑了在球员和球之间明确建模相互作用的问题。为此,我们提出了自我注意力模型,以从一组足球运动员中学习和提取相关信息,以从轨迹和视频数据中进行活动检测。我们对使用Sportlogiq提供的大型足球数据集在体育中使用视觉特征和轨迹数据进行了一项广泛的研究。我们的结果表明,大多数事件都可以使用视觉或基于轨迹的方法检测到时间分辨率小于0.5秒,并且每种方法都有独特的挑战。

Group activity detection in soccer can be done by using either video data or player and ball trajectory data. In current soccer activity datasets, activities are labelled as atomic events without a duration. Given that the state-of-the-art activity detection methods are not well-defined for atomic actions, these methods cannot be used. In this work, we evaluated the effectiveness of activity recognition models for detecting such events, by using an intuitive non-maximum suppression process and evaluation metrics. We also considered the problem of explicitly modeling interactions between players and ball. For this, we propose self-attention models to learn and extract relevant information from a group of soccer players for activity detection from both trajectory and video data. We conducted an extensive study on the use of visual features and trajectory data for group activity detection in sports using a large scale soccer dataset provided by Sportlogiq. Our results show that most events can be detected using either vision or trajectory-based approaches with a temporal resolution of less than 0.5 seconds, and that each approach has unique challenges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源