论文标题

深层$β$ -GA $ _2 $ o $ $ _3 $ delta掺杂的现场效应晶体管具有原位外延钝化

Deep-recessed $β$-Ga$_2$O$_3$ delta-doped field effect transistors with in situ epitaxial passivation

论文作者

Joishi, Chandan, Xia, Zhanbo, Jamison, John S., Sohel, Shahadat H., Myers, Roberto C., Lodha, Saurabh, Rajan, Siddharth

论文摘要

我们在$β$ -GA $ _2 $ o $ _3 $ delta-doped现场效应晶体管中引入了深层的门体系结构,以改善DC-RF分散和故障属性。设备设计结合了无意中的掺杂$β$ -GA $ _2 $ o $ $ _3 $ layer作为钝化电介质。为了制造设备,使用Bcl $ _3 $等离子体的蚀刻量在〜5 w rie中开发了深层的几何形状,以确保最小的等离子体损坏。血浆蚀刻引起的蚀刻损伤通过在高于600 $°c的温度下进行真空中的真空退火来减轻蚀刻损伤。实施了与门连接的场板边缘终止终止,以进行有效的场管理。在高V $ _ \ Mathrm {ds} $上,具有较低的膝盖行动的表面色散可忽略不计,并且与其未经广泛的对应物相比,获得了更好的分解特征。测量了三个端子外衰竭电压为315 V,对应于2.3 mV/cm的平均分解场。设备分解受现场板/钝化边缘的限制,并显示范围以进一步改进。对于$β$ -GA $ _2 $ o $ $ _3 $技术的外延钝化场效应晶体管的演示是一个重要的一步,因为该结构同时提供了与表面相关的分散和出色的场管理的控制。

We introduce a deep-recessed gate architecture in $β$-Ga$_2$O$_3$ delta-doped field effect transistors for improvement in DC-RF dispersion and breakdown properties. The device design incorporates an unintentionally doped $β$-Ga$_2$O$_3$ layer as the passivation dielectric. To fabricate the device, the deep-recess geometry was developed using BCl$_3$ plasma based etching at ~5 W RIE to ensure minimal plasma damage. Etch damage incurred with plasma etching was mitigated by annealing in vacuum at temperatures above 600 $°$C. A gate-connected field-plate edge termination was implemented for efficient field management. Negligible surface dispersion with lower knee-walkout at high V$_\mathrm{DS}$, and better breakdown characteristics compared to their unpassivated counterparts were achieved. A three terminal off-state breakdown voltage of 315 V, corresponding to an average breakdown field of 2.3 MV/cm was measured. The device breakdown was limited by the field-plate/passivation edge and presents scope for further improvement. This demonstration of epitaxially passivated field effect transistors is a significant step for $β$-Ga$_2$O$_3$ technology since the structure simultaneously provides control of surface-related dispersion and excellent field management.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源