论文标题
多任务闭环逆运动学稳定性通过半决赛编程
Multi-task closed-loop inverse kinematics stability through semidefinite programming
论文作者
论文摘要
当今的复杂机器人设计在某些情况下包括大量的自由度,可以解决多目标任务解决方案(例如,人形机器人或空中操纵器)。本文解决了这种高度冗余机器人的层次降低环逆运动算法的稳定问题。我们提出了一种通过在线调整封闭环控制收益来保证系统稳定性的方法。我们将这些收益作为决策变量和离散时间Lyapunov稳定性条件定义了半明确的编程问题(SDP)作为线性矩阵不平等,从而限制了SDP优化问题并保证优先任务的稳定性。据《最好的作者所知》,这项工作代表了SDP公式的第一个数学开发,该公式为高度冗余的机器人引入了多目标闭环逆运动问题的稳定性条件。通过模拟案例研究证明了所提出的方法的有效性,包括教学示例和MATLAB工具箱,以使社区受益。
Today's complex robotic designs comprise in some cases a large number of degrees of freedom, enabling for multi-objective task resolution (e.g., humanoid robots or aerial manipulators). This paper tackles the stability problem of a hierarchical losed-loop inverse kinematics algorithm for such highly redundant robots. We present a method to guarantee system stability by performing an online tuning of the closedloop control gains. We define a semi-definite programming problem (SDP) with these gains as decision variables and a discrete-time Lyapunov stability condition as a linear matrix inequality, constraining the SDP optimization problem and guaranteeing the stability of the prioritized tasks. To the best of authors' knowledge, this work represents the first mathematical development of an SDP formulation that introduces stability conditions for a multi-objective closed-loop inverse kinematic problem for highly redundant robots. The validity of the proposed approach is demonstrated through simulation case studies, including didactic examples and a Matlab toolbox for the benefit of the community.