论文标题
在非统一理论中的体积子区域复杂性上
On Volume Subregion Complexity in Non-Conformal Theories
论文作者
论文摘要
我们研究了全息5维模型中全息亚区域复杂性的体积处方,该模型由爱因斯坦重力组成,该模型耦合到具有非平整潜力的标量场。双4维量表理论不是共形的,并且在两个不同的固定点之间表现出RG流。在零温度和有限温度中,我们表明全息亚区域的复杂性可以用作模型非统一性的量度。该数量也表现出从纠缠区域的大小(例如本设置中的纠缠熵的行为)方面表现出单调的行为。由于在零温度下的全息重新归一化的子区域复杂度之间的连接和断开的最小表面之间的分离过渡,因此也有有限的跳跃。
We study the volume prescription of the holographic subregion complexity in a holographic 5 dimensional model consisting of Einstein gravity coupled to a scalar field with a non-trivial potential. The dual 4 dimensional gauge theory is not conformal and exhibits a RG flow between two different fixed points. In both zero and finite temperature we show that the holographic subregion complexity can be used as a measure of non-conformality of the model. This quantity exhibits also a monotonic behaviour in terms of the size of the entangling region, like the behaviour of the entanglement entropy in this setup. There is also a finite jump due to the disentangling transition between connected and disconnected minimal surfaces for holographic renormalized subregion complexity at zero temperature.