论文标题

轨道切恩绝缘子中磁顺序的电动切换

Electrical switching of magnetic order in an orbital Chern insulator

论文作者

Polshyn, Hryhoriy, Zhu, Jihang, Kumar, Manish A., Zhang, Yuxuan, Yang, Fangyuan, Tschirhart, Charles L., Serlin, Marec, Watanabe, Kenji, Taniguchi, Takashi, MacDonald, Allan H., Young, Andrea F.

论文摘要

磁性通常来自费米统计和排斥性库仑相互作用的关节作用,这有利于非零电子自旋的基态。结果,通过电场控制自旋磁力---仅间接实现Spintronics和Multiferonics的长期技术目标。在这里,我们在实验上证明了轨道奇特绝缘子中磁状态的直接电场控制,这是一种磁性系统,其中非平凡的带拓扑有利于轨道角动量的远距离顺序,但旋转被认为仍然无序。我们使用范德华的异质结构,该异质结构由石墨烯单层相对于Bernal堆叠的双层旋转断层,以实现狭窄且拓扑谷物的山谷中的MoiréMinibands。在这些频段内每个Moiré晶胞中的一个和三个电子的填充物上,我们观察到具有大约等于$ h/2e^2 $的横向电阻的量子量化的异常大厅效应,这表明该系统将系统自发极化为单瓦利预测带,其chern数量等于两个。在每个moiré晶胞中填充三个电子时,我们发现量子异常效应的迹象可以通过化学电位的现场效应控制来逆转。此外,这种过渡是滞后的,我们用来证明磁性磁态的非易失性电场逆转。理论分析表明效果来自拓扑边缘状态,这驱动了磁化标志的变化,因此在有利的磁态下逆转。磁状态的电压控制可用于电气对托有手性边缘状态的非挥发性磁性域结构进行电气模式,其应用范围从可重构的微波电路元件到超级功率磁性记忆。

Magnetism typically arises from the joint effect of Fermi statistics and repulsive Coulomb interactions, which favors ground states with non-zero electron spin. As a result, controlling spin magnetism with electric fields---a longstanding technological goal in spintronics and multiferroics---can be achieved only indirectly. Here, we experimentally demonstrate direct electric field control of magnetic states in an orbital Chern insulator, a magnetic system in which non-trivial band topology favors long range order of orbital angular momentum but the spins are thought to remain disordered. We use van der Waals heterostructures consisting of a graphene monolayer rotationally faulted with respect to a Bernal-stacked bilayer to realize narrow and topologically nontrivial valley-projected moiré minibands. At fillings of one and three electrons per moiré unit cell within these bands, we observe quantized anomalous Hall effects with transverse resistance approximately equal to $h/2e^2$, which is indicative of spontaneous polarization of the system into a single-valley-projected band with a Chern number equal to two. At a filling of three electrons per moiré unit cell, we find that the sign of the quantum anomalous Hall effect can be reversed via field-effect control of the chemical potential; moreover, this transition is hysteretic, which we use to demonstrate nonvolatile electric field induced reversal of the magnetic state. A theoretical analysis indicates that the effect arises from the topological edge states, which drive a change in sign of the magnetization and thus a reversal in the favored magnetic state. Voltage control of magnetic states can be used to electrically pattern nonvolatile magnetic domain structures hosting chiral edge states, with applications ranging from reconfigurable microwave circuit elements to ultralow power magnetic memory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源