论文标题
反与对称Weyl-Charge密度波中的轴子带拓扑
Axionic Band Topology in Inversion-Symmetric Weyl-Charge-Density Waves
论文作者
论文摘要
在最近的理论和实验研究中,研究人员将与电荷密度波(CDW)(CDW)的Weyl Semimetal的低能场理论联系起来,与轴支电动力学的高能理论联系起来。然而,仍然是一个开放的问题,即动态Weyl-CDW的晶格正则化实际上是单粒子轴突绝缘子(AXI)。在这封信中,我们使用分析和数值方法来研究平均场状态下的晶状体 - 同化和不一致的最小(磁)Weyl-CDW相。我们观察到,正如先前从字段理论所预测的那样,两个反转 - ($ \ natercal {i} $ - )对称weyl-cdws,$ ϕ = 0,π$因拓扑轴向角$Δθ_==π$而有所不同。但是,我们至关重要地发现,在$ ϕ = 0的最小weyl-cdw阶段的$ $都不是一个单独的axi。相反,它们是量子异常的大厅(QAH)和“阻塞” QAH绝缘子,这些绝缘子因调制细胞中的分数翻译而异,类似于聚乙二烯的Su-Schrieffer-Heeger模型的两个阶段。使用带拓扑和非亚伯浆果阶段的对称指标,我们证明了我们的结果概括为只有两个Weyl fermions的多频段系统,从而确定最小的Weyl-CDW不可避免地会携带非平凡的Chern数量,从而阻止了观察到静态磁电响应的观察。我们讨论了我们发现的实验含义,并提供了模型和分析,将结果推广到非磁性Weyl和Dirac-CDW。
In recent theoretical and experimental investigations, researchers have linked the low-energy field theory of a Weyl semimetal gapped with a charge-density wave (CDW) to high-energy theories with axion electrodynamics. However, it remains an open question whether a lattice regularization of the dynamical Weyl-CDW is in fact a single-particle axion insulator (AXI). In this Letter, we use analytic and numerical methods to study both lattice-commensurate and incommensurate minimal (magnetic) Weyl-CDW phases in the mean-field state. We observe that, as previously predicted from field theory, the two inversion- ($\mathcal{I}$-) symmetric Weyl-CDWs with $ϕ= 0,π$ differ by a topological axion angle $δθ_ϕ=π$. However, we crucially discover that $neither$ of the minimal Weyl-CDW phases at $ϕ=0,π$ is individually an AXI; they are instead quantum anomalous Hall (QAH) and "obstructed" QAH insulators that differ by a fractional translation in the modulated cell, analogous to the two phases of the Su-Schrieffer-Heeger model of polyacetylene. Using symmetry indicators of band topology and non-abelian Berry phase, we demonstrate that our results generalize to multi-band systems with only two Weyl fermions, establishing that minimal Weyl-CDWs unavoidably carry nontrivial Chern numbers that prevent the observation of a static magnetoelectric response. We discuss the experimental implications of our findings, and provide models and analysis generalizing our results to nonmagnetic Weyl- and Dirac-CDWs.