论文标题

基于扫描的LIDAR点云的语义分割:一项实验研究

Scan-based Semantic Segmentation of LiDAR Point Clouds: An Experimental Study

论文作者

Triess, Larissa T., Peter, David, Rist, Christoph B., Zöllner, J. Marius

论文摘要

自动驾驶汽车需要对周围的三维世界有一个语义理解,以推理其环境。最先进的方法使用深层神经网络来预测激光扫描中每个点的语义类别。处理LiDAR测量值的强大而有效的方法是使用二维,类似图像的投影。在这项工作中,我们对激光点云的基于图像的语义分割体系结构进行了全面的实验研究。我们演示了各种技术来提高性能并提高运行时以及内存约束。 首先,我们检查网络大小的效果,并建议以非常低的精度成本来实现更快的推理时间。接下来,我们介绍了一种不受系统性阻塞的改进点云投影技术。我们使用循环填充机制,该机制在水平视野边界上提供上下文。在第三部分中,我们使用软骰子丢失函数进行实验,该实验直接针对联合公制度量进行了优化。最后,我们提出了一种新型的卷积层,沿两个空间维度之一的重量分担减少,以解决沿激光雷达扫描的垂直轴的外观较大差异。我们提出了一组上述方法,该方法通过该方法实现了MIOU分割性能的3.2%,而同时仅需要42%的原始推理时间。

Autonomous vehicles need to have a semantic understanding of the three-dimensional world around them in order to reason about their environment. State of the art methods use deep neural networks to predict semantic classes for each point in a LiDAR scan. A powerful and efficient way to process LiDAR measurements is to use two-dimensional, image-like projections. In this work, we perform a comprehensive experimental study of image-based semantic segmentation architectures for LiDAR point clouds. We demonstrate various techniques to boost the performance and to improve runtime as well as memory constraints. First, we examine the effect of network size and suggest that much faster inference times can be achieved at a very low cost to accuracy. Next, we introduce an improved point cloud projection technique that does not suffer from systematic occlusions. We use a cyclic padding mechanism that provides context at the horizontal field-of-view boundaries. In a third part, we perform experiments with a soft Dice loss function that directly optimizes for the intersection-over-union metric. Finally, we propose a new kind of convolution layer with a reduced amount of weight-sharing along one of the two spatial dimensions, addressing the large difference in appearance along the vertical axis of a LiDAR scan. We propose a final set of the above methods with which the model achieves an increase of 3.2% in mIoU segmentation performance over the baseline while requiring only 42% of the original inference time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源