论文标题
球形对称重力崩溃的曲率爆破率降低到施瓦茨柴尔兹黑洞
Curvature blow-up rates in spherically symmetric gravitational collapse to a Schwarzschild black hole
论文作者
论文摘要
我们研究了球形对称的爱因斯坦 - 标准场设置中引起的重力塌陷引起的空间的黑洞内部,并研究了在脉冲无穷大附近的间距奇异性的曲率和质量的精确爆炸速率。我们特别表明,由于大规模通货膨胀,Kretschmann标量的爆炸速度比Schwarzschild设置的速度快。此外,爆炸速率不是恒定的,并且会收敛到Schwarzschild速度降低了序列式无穷大,这取决于标量沿事件范围的标量场的精确延迟多项式行为。这表明由PDE机制而不是ode机制驱动的一种新的爆炸现象。
We study the black hole interiors of spacetimes arising from gravitational collapse in the spherically symmetric Einstein-scalar field setting, and we investigate the precise blow-up rates of curvature and mass at the spacelike singularity near timelike infinity. We show in particular that the Kretschmann scalar blows up faster than in the Schwarzschild setting, due to mass inflation. Moreover, the blow-up rate is not constant and converges to the Schwarzschild rate towards timelike infinity and it depends on the precise late-time polynomial behaviour of the scalar field along the event horizon. This indicates a new blow-up phenomenon, driven by a PDE mechanism, rather than an ODE mechanism.