论文标题

极端一致性:克服注释稀缺和领域的变化

Extreme Consistency: Overcoming Annotation Scarcity and Domain Shifts

论文作者

Fotedar, Gaurav, Tajbakhsh, Nima, Ananth, Shilpa, Ding, Xiaowei

论文摘要

监督学习已被证明对医学图像分析有效。但是,它只能使用小标记的数据部分。它无法利用医疗图像数据集通常可用的大量未标记数据。当标记的数据集(尽管足够大)未能涵盖不同的方案或种族时,域名的模型进一步受到了域移动的困扰。在本文中,我们介绍了\ emph {极端一致性},该}通过在教师的半手范围内从相同或其他域中最大程度地利用了未标记的数据来克服上述局限性。极端的一致性是将给定图像的极端转换发送到学生网络的过程,然后将其预测与教师网络对未转换图像的预测保持一致。我们一致性损失的极端性质将我们的方法与相关工作区分开来,这些工作仅通过轻度预测一致性来产生次优性能。我们的方法是1)自动didactic,因为它不需要额外的专家注释; 2)多才多艺,因为它处理域移动和有限的注释问题; 3)通用,因为它很容易适用于分类,细分和检测任务; 4)易于实施,因为它不需要对抗性培训。我们评估了皮肤和眼底图像中病变和视网膜血管分割任务的方法。我们的实验表明,现代监督网络和最近的半监督模型都具有显着的性能增长。这种表现归因于极端一致性强大的正规化,这使学生网络能够学习如何处理标记和未标记图像的极端变体。这增强了网络在推理过程中应对不可避免的相同和跨域数据可变性的能力。

Supervised learning has proved effective for medical image analysis. However, it can utilize only the small labeled portion of data; it fails to leverage the large amounts of unlabeled data that is often available in medical image datasets. Supervised models are further handicapped by domain shifts, when the labeled dataset, despite being large enough, fails to cover different protocols or ethnicities. In this paper, we introduce \emph{extreme consistency}, which overcomes the above limitations, by maximally leveraging unlabeled data from the same or a different domain in a teacher-student semi-supervised paradigm. Extreme consistency is the process of sending an extreme transformation of a given image to the student network and then constraining its prediction to be consistent with the teacher network's prediction for the untransformed image. The extreme nature of our consistency loss distinguishes our method from related works that yield suboptimal performance by exercising only mild prediction consistency. Our method is 1) auto-didactic, as it requires no extra expert annotations; 2) versatile, as it handles both domain shift and limited annotation problems; 3) generic, as it is readily applicable to classification, segmentation, and detection tasks; and 4) simple to implement, as it requires no adversarial training. We evaluate our method for the tasks of lesion and retinal vessel segmentation in skin and fundus images. Our experiments demonstrate a significant performance gain over both modern supervised networks and recent semi-supervised models. This performance is attributed to the strong regularization enforced by extreme consistency, which enables the student network to learn how to handle extreme variants of both labeled and unlabeled images. This enhances the network's ability to tackle the inevitable same- and cross-domain data variability during inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源