论文标题

雷达基于范围超分辨率方法的无人机群的精确定位

Radar Accurate Localization of UAV Swarms Based on Range Super-Resolution Method

论文作者

Yang, Tianyuan, Zheng, Jibin, Su, Tao, Liu, Hongwei

论文摘要

在无人驾驶飞机(UAV)群的雷达精确定位中,高密度,相似的运动参数,小雷达横截面(RCS),强噪声和远距离范围提出了对雷达分辨率和传输功率的高需求。在本文中,通过使用长期集成(LTI)技术和无网稀疏方法的优势,我们构建了一个超分辨率框架,用于雷达精确定位无人机群,而无需更改雷达硬件和系统参数。此后,基于此框架,提出了一种范围的超分辨率方法来实现无人机群的准确定位。进行了数学分析和数值模拟,并证明,与基于Keystone Transform(KT)基于音乐的LTI方法,基于音乐的方法和重新获得的原子 - 符号最小化(RAM)方法相比,范围的超分辨率方法更可靠,并且实用性地用于Noisisy环境下的UAV胎盘的雷达精确定位。此外,还进行了X波段雷达的实际实验,以验证范围超分辨率方法的有效性。

In radar accurate localization of unmanned aerial vehicle (UAV) swarms, the high density, similar motion parameters, small radar cross-section (RCS), strong noise and far range put forward high requirements on radar resolution and transmitting power. In this paper, by using advantages of the long-time integration (LTI) technique and gridless sparse method, we construct a super-resolution framework for radar accurate localization of UAV swarms without changing radar hardware and system parameters. Thereafter, based on this framework, a range super-resolution method is proposed to realize the radar accurate localization of UAV swarms. Mathematical analyses and numerical simulations are performed and demonstrate that, compared to the keystone transform (KT)-based LTI method, MUSIC-based method and reweighted atomic-norm minimization (RAM)-based method, the range super-resolution method is more robust and practical for radar accurate localization of UAV swarms under the noisy environment. Additionally, the real experiment with X-band radar is also conducted to verify the effectiveness of the range super-resolution method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源