论文标题

根据消息尺寸减小和斐波那契比位平面映射的Stego质量增强

Stego Quality Enhancement by Message Size Reduction and Fibonacci Bit-Plane Mapping

论文作者

Abdulla, Alan A., Sellahewa, Harin, Jassim, Sabah A.

论文摘要

提出了一种有效的2步密集术技术,以增强对Stego的图像质量和秘密消息的不可检测性。第一步是一种预处理算法,该算法会减小秘密图像的大小而不会丢失信息。与其他现有图像隐志方法相比,这会改善Stego图像质量。提出的秘密图像尺寸减少(SISR)算法是一种有效的空间域技术。第二步是一种嵌入机制,依赖于像素强度的斐波那契表示,以最大程度地减少嵌入对Stego图像质量的影响。通过使用比特平面映射而不是位平面替换来实现改进。所提出的嵌入机制以两种方式随机嵌入二进制的LSB的表现:降低对Stego质量的影响和对统计坚定剂的鲁棒性提高。实验结果证明了拟议方案的好处:1)SISR比(间接导致能力增加); 2)Stego的质量; 3)对rs和ws等ste夫的坚固性。此外,实验结果表明,所提出的SISR算法可以扩展到适用于DICOM标准医学图像。提出了未来的安全标准化研究,该研究将着重于评估隐肌算法的安全性,性能和有效性。

An efficient 2-step steganography technique is proposed to enhance stego image quality and secret message un-detectability. The first step is a preprocessing algorithm that reduces the size of secret images without losing information. This results in improved stego image quality compared to other existing image steganography methods. The proposed secret image size reduction (SISR) algorithm is an efficient spatial domain technique. The second step is an embedding mechanism that relies on Fibonacci representation of pixel intensities to minimize the effect of embedding on the stego image quality. The improvement is attained by using bit-plane(s) mapping instead of bit-plane(s) replacement for embedding. The proposed embedding mechanism outperforms the binary based LSB randomly embedding in two ways: reduced effect on stego quality and increased robustness against statistical steganalysers. Experimental results demonstrate the benefits of the proposed scheme in terms of: 1) SISR ratio (indirectly results in increased capacity); 2) quality of the stego; and 3) robustness against steganalysers such as RS, and WS. Furthermore, experimental results show that the proposed SISR algorithm can be extended to be applicable on DICOM standard medical images. Future security standardization research is proposed that would focus on evaluating the security, performance, and effectiveness of steganography algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源