论文标题

Gymfg:带有Flightgear的健身房界面的框架

GymFG: A Framework with a Gym Interface for FlightGear

论文作者

Wood, Andrew, Sydney, Ali, Chin, Peter, Thapa, Bishal, Ross, Ryan

论文摘要

在过去的几十年中,可部署的自主飞行系统的进展缓慢地停滞不前。这反映在当今的生产空中飞行中,飞行员只能使基于物理的系统(例如自动驾驶仪)进行起飞,着陆,导航和地形/交通避免。显然,自主权并没有获得社区的信任,因为需要更高的问题复杂性和认知工作量。要解决信任,我们必须重新审视开发自主功能的过程:建模和仿真。鉴于现场测试的高昂成本,我们需要在具有适用于飞行系统的自动学习能力的高保真飞行模拟器中原型和评估自动驾驶飞行代理:这种开源开发平台不可用。结果,我们开发了Gymfg:Gymfg夫妇,并扩展了高保真,开源飞行模拟器和健壮的代理学习框架,以促进学习更复杂的任务。此外,我们已经证明了使用Gymfg使用模仿学习来训练自动空中剂。使用Gymfg,我们现在可以部署创新的想法来解决复杂的问题,并建立将原型转移到现实世界所需的信任。

Over the past decades, progress in deployable autonomous flight systems has slowly stagnated. This is reflected in today's production air-crafts, where pilots only enable simple physics-based systems such as autopilot for takeoff, landing, navigation, and terrain/traffic avoidance. Evidently, autonomy has not gained the trust of the community where higher problem complexity and cognitive workload are required. To address trust, we must revisit the process for developing autonomous capabilities: modeling and simulation. Given the prohibitive costs for live tests, we need to prototype and evaluate autonomous aerial agents in a high fidelity flight simulator with autonomous learning capabilities applicable to flight systems: such a open-source development platform is not available. As a result, we have developed GymFG: GymFG couples and extends a high fidelity, open-source flight simulator and a robust agent learning framework to facilitate learning of more complex tasks. Furthermore, we have demonstrated the use of GymFG to train an autonomous aerial agent using Imitation Learning. With GymFG, we can now deploy innovative ideas to address complex problems and build the trust necessary to move prototypes to the real-world.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源