论文标题
椭圆台式中n-periodics的八十个新不变的人
Eighty New Invariants of N-Periodics in the Elliptic Billiard
论文作者
论文摘要
我们在共聚焦椭圆对(椭圆台球)中介绍了Poncelet N-周期的几个实验发现的不变性。回想一下这个家庭由两个运动积分(线性和角动量)充分定义,因此任何“新”不变性都取决于它们。然而,证明它们可能需要复杂的方法。我们参考一些已经贡献的两种证明。我们希望本文能够激发仍然缺乏证据的人的贡献。
We introduce several-dozen experimentally-found invariants of Poncelet N-periodics in the confocal ellipse pair (Elliptic Billiard). Recall this family is fully defined by two integrals of motion (linear and angular momentum), so any "new" invariants are dependent upon them. Nevertheless, proving them may require sophisticated methods. We reference some two-dozen proofs already contributed. We hope this article will motivate contributions for those still lacking proof.