论文标题

演示:基于增强学习的柔性双工系统,用于B5G,低于6 GHz

Demo: A Reinforcement Learning-based Flexible Duplex System for B5G with Sub-6 GHz

论文作者

Kim, Soo-Min, Cha, Han, Kim, Seong-Lyun, Chae, Chan-Byoung

论文摘要

在本文中,我们提出了一个基于增强学习的灵活双链系统,用于B5G,低于6 GHz。该系统结合了完整的无线电和动态光谱访问,以最大程度地提高光谱效率。我们通过实现基于FPGA的实时测试台来验证该方法的可行性。此外,我们将所提出的算法与通过系统级评估得出的结果进行了比较。

In this paper, we propose a reinforcement learning-based flexible duplex system for B5G with Sub-6 GHz. This system combines full-duplex radios and dynamic spectrum access to maximize the spectral efficiency. We verify this method's feasibility by implementing an FPGA-based real-time testbed. In addition, we compare the proposed algorithm with the result derived from the numerical analysis through system-level evaluations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源