论文标题

通过使用大约最佳的L内核来提高顺序蒙特卡洛采样器的效率

Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels

论文作者

Green, Peter L, Moore, Robert E, Jackson, Ryan J, Li, Jinglai, Maskell, Simon

论文摘要

通过促进来自任意概率分布的样品的生成,马尔可夫链蒙特卡洛(MCMC)可以说是评估贝叶斯推理问题的工具,这些工具会产生非标准的后验分布。然而,近年来,很明显,顺序的蒙特卡洛(SMC)采样器有可能以多种方式胜过MCMC。 SMC采样器更适合高度并行计算体系结构,还具有MCMC无法使用的各种调谐参数。一个这样的参数 - “ l -kernel” - 是一个用户定义的概率分布,可用于影响采样器的效率。在当前论文中,作者解释了如何得出L-Kernel的表达式,以最大程度地减少SMC采样器实现的估计值的方差。然后提出各种近似方法来帮助实施提出的L-Kernel。在多种情况下,证明了所得算法的性能的提高。对于当前论文中显示的示例,使用大约最佳的L-Kernel的使用使SMC估计值的方差降低了99%,同时还将重新采样的次数减少了65%至70%。该手稿随附的Python代码和代码测试可通过GitHub存储库\ url {https://github.com/plgreenliru/smc_approx_optl}获得。

By facilitating the generation of samples from arbitrary probability distributions, Markov Chain Monte Carlo (MCMC) is, arguably, \emph{the} tool for the evaluation of Bayesian inference problems that yield non-standard posterior distributions. In recent years, however, it has become apparent that Sequential Monte Carlo (SMC) samplers have the potential to outperform MCMC in a number of ways. SMC samplers are better suited to highly parallel computing architectures and also feature various tuning parameters that are not available to MCMC. One such parameter - the `L-kernel' - is a user-defined probability distribution that can be used to influence the efficiency of the sampler. In the current paper, the authors explain how to derive an expression for the L-kernel that minimises the variance of the estimates realised by an SMC sampler. Various approximation methods are then proposed to aid implementation of the proposed L-kernel. The improved performance of the resulting algorithm is demonstrated in multiple scenarios. For the examples shown in the current paper, the use of an approximately optimum L-kernel has reduced the variance of the SMC estimates by up to 99 % while also reducing the number of times that resampling was required by between 65 % and 70 %. Python code and code tests accompanying this manuscript are available through the Github repository \url{https://github.com/plgreenLIRU/SMC_approx_optL}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源