论文标题
高自旋方程的参与系统
The Involutive System of Higher-Spin Equations
论文作者
论文摘要
我们重新审视了在非平凡背景下高自旋场一致的自由传播的问题,重点是对称张量(-spinor)s。扁平空间中大规模田地的Fierz-Pauli方程形成了一个参与系统,其代数一致性归功于某些量学的身份。前者的零质量极限直接导致横向无标准的无质量高自旋方程,其中场和仪表参数都具有各自的涉及系统和规格身份。在非平凡的背景下,保存这些规格的身份和对称性可以确保正确的传播自由度数量。通过这种方法,我们发现在某些引力/电磁背景中,一致的方程组合的方程组和无质量高旋转玻色子和费米子。我们还介绍了部分无质量领域的参与系统,并给出了其仪表转换的明确形式。我们考虑了操作员在平面空间中对称张量(-spinor)的谎言超级甲虫,并证明在广告空间中,代数在非线性上关闭,需要中央扩展。
We revisit the problem of consistent free propagation of higher-spin fields in nontrivial backgrounds, focusing on symmetric tensor(-spinor)s. The Fierz-Pauli equations for massive fields in flat space form an involutive system, whose algebraic consistency owes to certain gauge identities. The zero mass limit of the former leads directly to massless higher-spin equations in the transverse-traceless gauge, where both the field and the gauge parameter have their respective involutive systems and gauge identities. In nontrivial backgrounds, it is the preservation of these gauge identities and symmetries that ensures the correct number of propagating degrees of freedom. With this approach we find consistent sets of equations for massive and massless higher-spin bosons and fermions in certain gravitational/electromagnetic backgrounds. We also present the involutive system of partially massless fields, and give an explicit form of their gauge transformations. We consider the Lie superalgebra of the operators on symmetric tensor(-spinor)s in flat space, and show that in AdS space the algebra closes nonlinearly and requires a central extension.