论文标题
可转移的主动抓握和真实体现的数据集
Transferable Active Grasping and Real Embodied Dataset
论文作者
论文摘要
在杂乱无章的场景中抓住机器人视觉系统的挑战,因为对象的部分阻塞可以阻碍检测准确性。我们采用强化学习(RL)框架和3D Vision Architectures来搜索可行的观点,以通过使用手工安装的RGB-D摄像机来抓住。为了克服光真实环境仿真的缺点,我们提出了一个称为真实体现数据集(RED)的大型数据集,其中包括上半球上的全视点真实样品,并带有Amodal注释,并启用一个具有真实视觉反馈的模拟器。基于此数据集,开发了一个实用的3阶段可转移的主动抓地管管道,它可以适应看不见的混乱场景。在我们的管道中,我们提出了一种新颖的面具引导的奖励,以克服抓握稀疏的奖励问题,并确保类别 - 略带行为。在模拟和现实世界的UR-5机器人臂上,通过广泛的实验评估了握把管道及其可能的变体。
Grasping in cluttered scenes is challenging for robot vision systems, as detection accuracy can be hindered by partial occlusion of objects. We adopt a reinforcement learning (RL) framework and 3D vision architectures to search for feasible viewpoints for grasping by the use of hand-mounted RGB-D cameras. To overcome the disadvantages of photo-realistic environment simulation, we propose a large-scale dataset called Real Embodied Dataset (RED), which includes full-viewpoint real samples on the upper hemisphere with amodal annotation and enables a simulator that has real visual feedback. Based on this dataset, a practical 3-stage transferable active grasping pipeline is developed, that is adaptive to unseen clutter scenes. In our pipeline, we propose a novel mask-guided reward to overcome the sparse reward issue in grasping and ensure category-irrelevant behavior. The grasping pipeline and its possible variants are evaluated with extensive experiments both in simulation and on a real-world UR-5 robotic arm.