论文标题

$^{96} $ ZR的低寓言集体状态的描述,基于四极管 - 促成bohr hamiltonian

Description of the low-lying collective states of $^{96}$Zr based on the quadrupole-collective Bohr Hamiltonian

论文作者

Mardyban, E. V., Kolganova, E. A., Shneidman, T. M., Jolos, R. V., Pietralla, N.

论文摘要

$^{96} $ ZR的实验数据表明具有小混合振幅的球形和变形结构。该核观察到了几种集体低洼状态,E2和M1转变。考虑到这些数据,使用了具有球形和变形的最小值的$β$和$γ$形状变量,这是$β$和$γ$形状的变量,考虑到这些数据,考虑到这些数据。确定两个最小值附近电势的两个最小值的相对深度,屏障的高度和宽度,以实现对$^{96} $ ZR的低洼集集体四极状状态的观察到的特性的令人满意的描述。与激发能的实验数据达成了良好的一致性,$ b(e2)$和$ b(M1; 2^+_ 2 \ rightarrow 2^+_ 1)$降低过渡概率。结果表明,可以在几何集体模型中以令人满意的方式描述$^{96} $ ZR的低能结构,具有潜在函数支持形状共存的情况,而无需其他形状的限制。但是,只有在旋转惯性系数比振动良好区域的振动量小四倍时,才能复制$ 2^+_ 2 $状态的激发能。还显示壳效应对于$ b(M1; 2^+_ 2 \ rightArrow 2^+_ 1)$和$ b(M1; 3^+_ 1 \ rightArrow 2^+_ 1)$过渡概率很重要。配对振动模式对$ 0^+_ 2 \ rightarrow 0^+_ 1 $转换的指示,与先前的结果一致。

Experimental data on $^{96}$Zr indicate coexisting spherical and deformed structures with small mixing amplitudes. Several collective low-lying states and E2 and M1 transitions are observed for this nucleus. The quadrupole-collective Bohr Hamiltonian depending on both $β$ and $γ$ shape variables with a potential having spherical and deformed minima, is applied consideration of these data. The relative depth of two minima, height and width of the barrier, rigidity of the potential near both minima are determined so as to achieve a satisfactory description of the observed properties of the low-lying collective quadrupole states of $^{96}$Zr. Good agreement with the experimental data on the excitation energies, $B(E2)$ and $B(M1; 2^+_2\rightarrow 2^+_1)$ reduced transition probabilities is obtained. It is shown that the low-energy structure of $^{96}$Zr can be described in a satisfactory way within the Geometrical Collective Model with a potential function supporting shape coexistence without other restrictions of its shape. However, the excitation energy of the $2^+_2$ state can be reproduced only if the rotation inertia coefficient is taken by four times smaller than the vibrational one in the region of the deformed well. It is shown also that shell effects are important for the description of the $B(M1; 2^+_2 \rightarrow 2^+_1)$ and $B(M1; 3^+_1 \rightarrow 2^+_1)$ transition probabilities. An indication for the influence of the pairing vibrational mode on the $0^+_2 \rightarrow 0^+_1$ transition is confirmed in agreement with the previous result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源