论文标题
在旋转采样计划下使用聚类数据进行置换测试
Permutation tests under a rotating sampling plan with clustered data
论文作者
论文摘要
考虑一个由采样单元组成的人群,在时间,空间或其他动态上都会发展。我们希望监视其手段,中值或其他参数的演变。为了提供行政方便和信息性,通常通过旋转计划收集群集数据。在旋转计划下,相同簇中的观测值是相关的,并且在不同场合收集的同一单位的观察也相关。忽略这种相关结构可能会导致无效的推理程序。参数模型中的群集结构很困难,或者将具有很高的错误指定风险。在本文中,我们探讨了通过旋转采样计划收集的聚类数据中的交换性,以制定置换方案,以测试各种感兴趣的假设。我们还引入了一个半参数密度比模型,以促进旋转采样计划中的多重种群结构。该组合确保了推理方法的有效性,同时从采样计划中提取最大信息。一项仿真研究表明,所提出的测试是否牢固地控制了I型错误,无论数据是否聚集。密度比模型的使用改善了测试的功能。
Consider a population consisting of clusters of sampling units, evolving temporally, spatially, or according to other dynamics. We wish to monitor the evolution of its means, medians, or other parameters. For administrative convenience and informativeness, clustered data are often collected via a rotating plan. Under rotating plans, the observations in the same clusters are correlated, and observations on the same unit collected on different occasions are also correlated. Ignoring this correlation structure may lead to invalid inference procedures. Accommodating cluster structure in parametric models is difficult or will have a high level of misspecification risk. In this paper, we explore exchangeability in clustered data collected via a rotating sampling plan to develop a permutation scheme for testing various hypotheses of interest. We also introduce a semiparametric density ratio model to facilitate the multiple population structure in rotating sampling plans. The combination ensures the validity of the inference methods while extracting maximum information from the sampling plan. A simulation study indicates that the proposed tests firmly control the type I error whether or not the data are clustered. The use of the density ratio model improves the power of the tests.