论文标题

有些sn虫比其他蛇更糟

Some snarks are worse than others

论文作者

Máčajová, Edita, Mazzuoccolo, Giuseppe, Mkrtchyan, Vahan, Zerafa, Jean Paul

论文摘要

图理论中的许多猜想和开放问题可以简化为立方图,也可以直接指定用于立方图。此外,众所周知,对于许多问题,反例必须是蛇形,即一个无括号的立方图,不是3个 - 可观的色彩。在本文中,我们处理了这样一个事实,即潜在的反例示例家族可以将许多有趣的猜想的家族缩小到一个家庭$ {\ cal s} _ {\ geq 5} $的bridgeless bridgeless Cubic Graph的$ {\ cal s} _ {\ geq 5} $,其边缘集无法覆盖四个完美的匹配。循环双盖的猜想,最短的循环盖子猜想和扇形 - 拉斯波特猜想是$ {\ cal s} _ {\ geq 5} $至关重要的语句的示例。在本文中,我们研究了参数,这些参数有可能进一步完善$ {\ cal s} _ {\ geq 5} $,从而放大了可以验证上述猜想的立方图集。我们表明,$ {\ cal s} _ {\ geq 5} $可以自然地分解为复杂性增加的子集,从而产生自然量表以证明这些猜想。更确切地说,我们考虑以下参数和问题:给定无桥的立方图,(i)需要添加多少个完美匹配,(ii)需要添加多少个相同的完美匹配的副本,并且(iii)需要添加多少个2-因子,以使结果常规图是i类i?我们为这些参数提供了新的结果,我们还建立了这些问题与一些长期存在的猜想之间的一些牢固关系。

Many conjectures and open problems in graph theory can either be reduced to cubic graphs or are directly stated for cubic graphs. Furthermore, it is known that for a lot of problems, a counterexample must be a snark, i.e. a bridgeless cubic graph which is not 3--edge-colourable. In this paper we deal with the fact that the family of potential counterexamples to many interesting conjectures can be narrowed even further to the family ${\cal S}_{\geq 5}$ of bridgeless cubic graphs whose edge set cannot be covered with four perfect matchings. The Cycle Double Cover Conjecture, the Shortest Cycle Cover Conjecture and the Fan-Raspaud Conjecture are examples of statements for which ${\cal S}_{\geq 5}$ is crucial. In this paper, we study parameters which have the potential to further refine ${\cal S}_{\geq 5}$ and thus enlarge the set of cubic graphs for which the mentioned conjectures can be verified. We show that ${\cal S}_{\geq 5}$ can be naturally decomposed into subsets with increasing complexity, thereby producing a natural scale for proving these conjectures. More precisely, we consider the following parameters and questions: given a bridgeless cubic graph, (i) how many perfect matchings need to be added, (ii) how many copies of the same perfect matching need to be added, and (iii) how many 2--factors need to be added so that the resulting regular graph is Class I? We present new results for these parameters and we also establish some strong relations between these problems and some long-standing conjectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源