论文标题
利用文本和一阶逻辑中的声明性知识进行细粒度宣传检测
Leveraging Declarative Knowledge in Text and First-Order Logic for Fine-Grained Propaganda Detection
论文作者
论文摘要
我们研究新闻文章中宣传文本片段的检测。我们不仅从培训数据中的输入输出数据点中学习,而是引入了一种注入细粒度宣传技术的声明性知识的方法。具体而言,我们利用一阶逻辑和自然语言表达的声明性知识。前者是指粗粒和细粒度预测之间的逻辑一致性,该预测用于用命题布尔表达式将训练过程正规化。后者是指每种宣传技术的字面定义,该定义用于获取用于规范模型参数的类表示。我们对宣传技术语料库进行实验,这是一个大型手动注释的数据集,用于细度宣传检测。实验表明,我们的方法实现了卓越的性能,表明利用声明知识可以帮助模型做出更准确的预测。
We study the detection of propagandistic text fragments in news articles. Instead of merely learning from input-output datapoints in training data, we introduce an approach to inject declarative knowledge of fine-grained propaganda techniques. Specifically, we leverage the declarative knowledge expressed in both first-order logic and natural language. The former refers to the logical consistency between coarse- and fine-grained predictions, which is used to regularize the training process with propositional Boolean expressions. The latter refers to the literal definition of each propaganda technique, which is utilized to get class representations for regularizing the model parameters. We conduct experiments on Propaganda Techniques Corpus, a large manually annotated dataset for fine-grained propaganda detection. Experiments show that our method achieves superior performance, demonstrating that leveraging declarative knowledge can help the model to make more accurate predictions.