论文标题

分区晶格和身份验证的四生直接功能

Four-generated direct powers of partition lattices and authentication

论文作者

Czédli, Gábor

论文摘要

对于整数$ n \ geq 5 $,H。Strietz(1975)和L.Zádori(1986)证明,所有分区的晶格部分$(n)$的$ \ {1,2,\ dots,n \} $是四分机的。开发L.Zádori特别优雅的结构,我们证明,即使是$ k $ thind Direct Power Parter Part $(n)^k $ part $(n)$也是许多生成的,但对于许多代表$ k $,也只有有限的许多指数。例如,对于每$ k \ leq 3 \ cdot 10^{89} $,part $(n)^k $都是四生成的,并且它具有一个四元素生成集,对于每$ k \ leq 1.4 \ cdot 10^{34} $而言,它并不是抗抗逆金。与这些结果有关,我们概述了如何在身份验证和秘密密钥加密中使用这些晶格的协议。

For an integer $n\geq 5$, H. Strietz (1975) and L. Zádori (1986) proved that the lattice Part$(n)$ of all partitions of $\{1,2,\dots,n\}$ is four-generated. Developing L. Zádori's particularly elegant construction further, we prove that even the $k$-th direct power Part$(n)^k$ of Part$(n)$ is four-generated for many but only finitely many exponents $k$. E.g., Part$(n)^k$ is four-generated for every $k\leq 3\cdot 10^{89}$, and it has a four element generating set that is not an antichain for every $k\leq 1.4\cdot 10^{34}$. In connection with these results, we outline a protocol how to use these lattices in authentication and secret key cryptography.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源