论文标题
穆斯2020年 - 现实媒体挑战和研讨会中的第一个国际多模式分析
MuSe 2020 -- The First International Multimodal Sentiment Analysis in Real-life Media Challenge and Workshop
论文作者
论文摘要
现实媒体(MUSE)2020中的多模式情感分析是一个基于挑战的研讨会,重点是情感识别任务,以及通过更全面地整合音频视频和语言方式的情感目标参与和可信赖性检测。 2020年缪斯缪斯(Muse)的目的是将不同学科的社区汇集在一起;主要是,视听情感识别社区(基于信号)和情感分析社区(基于符号)。我们提出了三个独特的子挑战:穆斯 - 妻子,它着重于连续的情感(唤醒和价)预测;穆斯特群岛主题,参与者认为特定领域的话题是3级(低,中,高)情绪的目标;和穆斯特·托斯特(Muse-Trust),可以预测可信赖的新颖方面。在本文中,我们提供了有关Muse-Car的详细信息,Muse-Car是用于挑战的野外数据库中的第一个此类数据库,以及采用的最新功能和建模方法。对于每个子挑战,为参与者设定了竞争性的基线;也就是说,在测试中,我们为.2568的Muse-wild报道了众多的(价和唤醒)CCC为0.2568,以76.78%的分数(计算为0.34 $ \ cdot $ uar + 0.66 $ \ cdot $ f1)为10级主题为76.78%,在10级主题上,在3级情绪上为40.64%,在3级情感上和穆斯ccc ccc ccc cccc cccc cccc cccc cccc cccc ccc ccc ccc ccc ccc ccccctional上。
Multimodal Sentiment Analysis in Real-life Media (MuSe) 2020 is a Challenge-based Workshop focusing on the tasks of sentiment recognition, as well as emotion-target engagement and trustworthiness detection by means of more comprehensively integrating the audio-visual and language modalities. The purpose of MuSe 2020 is to bring together communities from different disciplines; mainly, the audio-visual emotion recognition community (signal-based), and the sentiment analysis community (symbol-based). We present three distinct sub-challenges: MuSe-Wild, which focuses on continuous emotion (arousal and valence) prediction; MuSe-Topic, in which participants recognise domain-specific topics as the target of 3-class (low, medium, high) emotions; and MuSe-Trust, in which the novel aspect of trustworthiness is to be predicted. In this paper, we provide detailed information on MuSe-CaR, the first of its kind in-the-wild database, which is utilised for the challenge, as well as the state-of-the-art features and modelling approaches applied. For each sub-challenge, a competitive baseline for participants is set; namely, on test we report for MuSe-Wild a combined (valence and arousal) CCC of .2568, for MuSe-Topic a score (computed as 0.34$\cdot$ UAR + 0.66$\cdot$F1) of 76.78 % on the 10-class topic and 40.64 % on the 3-class emotion prediction, and for MuSe-Trust a CCC of .4359.