论文标题
衍生物和积分:矩阵订单运算符作为分数演算的扩展
Derivatives and integrals: matrix order operators as an extension of the fractional calculus
论文作者
论文摘要
分数演算的自然结果是扩展到分化和整合的基质顺序。矩阵 - 阶导数定义和矩阵阶的积分源于应用于分数差异整合定义的伽马函数的概括。这项工作重点是应用于Riemann-Liouville版本的分数演算的一些结果,扩展到其矩阵阶概念。该扩展也可能适用于其他版本的分数演算。显示了一些可能的普通和部分矩阵 - 阶微分方程以及相关精确解的示例。
A natural consequence of the fractional calculus is its extension to a matrix order of differentiation and integration. A matrix-order derivative definition and a matrix-order integration arise from the generalization of the gamma function applied to the fractional differintegration definition. This work focuses on some results applied to the Riemann-Liouville version of the fractional calculus extended to its matrix-order concept. This extension also may apply to other versions of fractional calculus. Some examples of possible ordinary and partial matrix-order differential equations and related exact solutions are shown.