论文标题

星系中星系的星形和形态学特性$3π$调查 - I. Galaxy和Supernova分类的机器学习方法

Star formation and morphological properties of galaxies in the Pan-STARRS $3 π$ survey- I. A machine learning approach to galaxy and supernova classification

论文作者

Baldeschi, A., Miller, A., Stroh, M., Margutti, R., Coppejans, D. L.

论文摘要

我们根据其最近的恒星形成历史和形态进行了Pan-Starrs1(PS1)3 $π$调查中的星系分类。具体而言,我们使用PS1数据释放2的光度特征(颜色和力矩)训练和测试两个随机森林(RF)分类器。形态分类的标签取自Huertas-Company+2011,而星形形成馏分(SFF)的标签来自Blanton+2005 Catalog。我们发现颜色比光度矩提供了更具预测性的精度。我们从形态上将星系分类为早期或晚期类型,我们的RF模型达到了78 \%的分类精度。我们的第二个模型将星系分类为具有低至中度或高SFF的星系。该模型达到了89 \%的分类精度。我们将两个RF分类器应用于整个PS1 $3π$数据集,使我们能够为每个PS1来源分配两个分数:$ P_ \ Mathrm {HSFF} $,可以量化具有高SFF的可能性,并量化$ p_ \ p_ mathrm {spiral} $,从而量化了具有晚期效果的可能性。最后,作为概念证明,我们将分类框架应用于Zwicky Transient工厂和Lick天文台Supernova搜索样本的Supernova(SN)宿主 - 盖拉克斯。我们表明,通过选择$ p_ \ mathrm {hsff} $或$ p_ \ mathrm {spiral} $,可以在样品中显着增强或抑制样品中核心崩溃SNE(或热核SNE)的分数,相对于随机猜测。该结果证明了上下文信息如何在首次检测时如何帮助瞬态分类。在当前光谱释放的时间域天文学时代,及时的自动分类至关重要。

We present a classification of galaxies in the Pan-STARRS1 (PS1) 3$π$ survey based on their recent star formation history and morphology. Specifically, we train and test two Random Forest (RF) classifiers using photometric features (colors and moments) from the PS1 data release 2. Labels for the morphological classification are taken from Huertas-Company+2011, while labels for the star formation fraction (SFF) are from the Blanton+2005 catalog. We find that colors provide more predictive accuracy than photometric moments. We morphologically classify galaxies as either early- or late-type, and our RF model achieves a 78\% classification accuracy. Our second model classifies galaxies as having either a low-to-moderate or high SFF. This model achieves an 89\% classification accuracy. We apply both RF classifiers to the entire PS1 $3π$ dataset, allowing us to assign two scores to each PS1 source: $P_\mathrm{HSFF}$, which quantifies the probability of having a high SFF, and $P_\mathrm{spiral}$, which quantifies the probability of having a late-type morphology. Finally, as a proof of concept, we apply our classification framework to supernova (SN) host-galaxies from the Zwicky Transient Factory and the Lick Observatory Supernova Search samples. We show that by selecting on $P_\mathrm{HSFF}$ or $P_\mathrm{spiral}$ it is possible to significantly enhance or suppress the fraction of core-collapse SNe (or thermonuclear SNe) in the sample with respect to random guessing. This result demonstrates how contextual information can aid transient classifications at the time of first detection. In the current era of spectroscopically-starved time-domain astronomy, prompt automated classification is paramount.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源