论文标题
$ z \ sim 1 $星形星系的平坦旋转曲线和磁盘尺寸长度演变的证据
Flat Rotation Curves of $z\sim 1$ Star-Forming Galaxies and Evidence of Disk-Scale Length Evolution
论文作者
论文摘要
我们研究了$ z \ sim 1 $ star形成星系的旋转曲线(RCS)的形状,并将它们与当地恒星形成星系进行比较。为此,我们使用了K-Band多对象光谱仪(KMO)的409美元的星系进行红移一光谱调查(KROSS)。该样本涵盖了红移范围$ 0.57 \ leq Z \ leq 1.04 $,有效的半径$ 0.69 \ leq r_e \ weft [kpc \ right] \ leq 7.73 $,绝对H频率的幅度$ -24.46 \左[m_ \ odot \ right] \ right)= 9.95 $和中值总星形构型$ log \ left(sfr_ {tot} \ \ lest [m_ \ odot \ yr \ yr^{ - 1} { - 1} \ right] \ right] \ right] \ right)= 1.49 $)。使用$^{3D} $ BAROLO(BAROLO),我们提取$Hα$运动图和相应的旋转曲线(RCS)。巴洛洛的主要优点是它将梁涂抹在3D观测空间中,即使在低空间分辨率数据中,也为我们提供了内在的旋转速度。使用不对称漂移校正(ADC),我们校正了压力梯度效应的RC,这似乎比在高Z星系中的束涂抹更大的效应。几乎所有对象($ 0.1 <v/σ<15 $)都受压力梯度的影响,我们注意到ADC将这些系统的旋转速度提高了$ \ sim 10-87 \%$。只有三种技术(3D基因建模 + 3D梁校正 + ADC)的组合产生单个星系的固有RC。此外,我们介绍了由237个高质量对象构建的共同添加的RCS,以获得内在的RC形状到6.4 $ \ times $ disk比例长度。对于局部恒星磁盘型星系,我们没有看到RC的形状发生任何变化。相比之下,我们确实发现了星系的恒星长度长度($ r_d $)的显着发展。因此,我们得出结论,恒星磁盘会在宇宙时间内发展,而总质量分布保持恒定。
We investigate the shape of the Rotation Curves (RCs) of $z\sim 1$ star-forming galaxies and compare them with the local star-forming galaxies. For this purpose, we have used $409$ galaxies from the K-band Multi-Object Spectrograph (KMOS) for Redshift One Spectroscopic Survey (KROSS). This sample covers the redshift range $0.57\leq z \leq 1.04$, effective radii $0.69 \leq R_e \left[kpc \right] \leq 7.73$, absolute H-band magnitude $-24.46 \leq M_H \leq -18.85$ with median stellar mass $log\left(M_* \ \left[M_\odot \right]\right)=9.95$ and median total star-formation rate $log\left(SFR_{tot} \ \left[M_\odot \ yr^{-1} \right]\right)=1.49$. Using $^{3D}$BAROLO (Barolo), we extract $Hα$ kinematic maps and corresponding Rotation Curves (RCs). The main advantage of Barolo is that it incorporates the beam smearing in the 3D observational space, which provide us with the intrinsic rotation velocity even in the low spatial resolution data. Using Asymmetric Drift Correction (ADC), we have corrected the RCs for the pressure gradient effect, which seems to be a more dominant effect than beam smearing in high-z galaxies. Nearly all objects ($0.1 <v/ σ< 15$) are affected by the pressure gradient, and we noticed that ADC improves the rotation velocity of these systems by $\sim 10-87\%$. Only a combination of the three techniques (3D-kinematic modelling + 3D-Beamsmearing correction + ADC ) yields the intrinsic RC of an individual galaxy. Further, we present the co-added RCs constructed out of 237 high-quality objects to obtain intrinsic RC shapes out to 6.4 $\times$ disk scale length. We do not see any change in the shape of RCs with respect to the local star-forming disk-type galaxies. In contrast, we do find a significant evolution in the stellar-disk length ($R_D$) of the galaxies. Therefore, we conclude stellar disk evolves over cosmic time while total mass distribution stays constant.