论文标题
重新审视和椭圆形的椭圆形的花束
Bouquets revisited and equivariant elliptic cohomology
论文作者
论文摘要
令M为具有圆形动作的自旋歧管。鉴于椭圆曲线E,我们引入了Grojnowski中的介绍,椭圆形的椭圆形花束了M. bott-taubes和Rosu之后,我们表明椭圆花束的整合得到很好的定义。特别是这意味着Witten的刚性定理。 我们强调了K理论和椭圆形的共同体中的集成之间的相似性。
Let M be a spin manifold with a circular action. Given an elliptic curve E, we introduce, as in Grojnowski, elliptic bouquets of germs of holomorphic equivariant cohomology classes on M. Following Bott-Taubes and Rosu, we show that integration of an elliptic bouquet is well defined. In particular, this imply Witten's rigidity theorem. We emphasize the similarity between integration in K-theory and in elliptic cohomology.