论文标题
用于可配置的,平行的,错误的纠缠门的数字优化
Numeric optimization for configurable, parallel, error-robust entangling gates in large ion registers
论文作者
论文摘要
我们研究了一类用于被困原子离子的纠缠大门,并演示了数字优化技术的使用来创建一系列快速的,误解的门构建体。我们的方法使用单独地址,幅度和相位调制的控件引入了数字优化的框架,该控件针对最大和部分纠缠的操作,在离子对,完整的多离子寄存器,大型登记册的多离子子集以及单个寄存器中的并行操作。我们的计算和模拟表明,在Mølmer-SørensenGate中使用的差异阶段的调制允许在一系列栅极配置范围内允许大约时间优势控制,并且当适当地与分析约束相结合时,还可以为关键实验源提供鲁棒性。我们进一步证明了实验限制的影响,例如界限对耦合率或调制带限制对可实现性能的影响。使用基于TensorFlow的自定义优化引擎我们还展示了使用本地固定笔记本电脑对离子寄存器进行优化多达20个离子数以数十分钟的优化的时间,从而使计算访问与近距离捕获离子设备相关的系统尺度。
We study a class of entangling gates for trapped atomic ions and demonstrate the use of numeric optimization techniques to create a wide range of fast, error-robust gate constructions. Our approach introduces a framework for numeric optimization using individually addressed, amplitude and phase modulated controls targeting maximally and partially entangling operations on ion pairs, complete multi-ion registers, multi-ion subsets of large registers, and parallel operations within a single register. Our calculations and simulations demonstrate that the inclusion of modulation of the difference phase for the bichromatic drive used in the Mølmer-Sørensen gate permits approximately time-optimal control across a range of gate configurations, and when suitably combined with analytic constraints can also provide robustness against key experimental sources of error. We further demonstrate the impact of experimental constraints such as bounds on coupling rates or modulation band-limits on achievable performance. Using a custom optimization engine based on TensorFlow we also demonstrate time-to-solution for optimizations on ion registers up to 20 ions of order tens of minutes using a local-instance laptop, allowing computational access to system-scales relevant to near-term trapped-ion devices.