论文标题

计算测试错误而无需测试集

Computing the Testing Error without a Testing Set

论文作者

Corneanu, Ciprian, Madadi, Meysam, Escalera, Sergio, Martinez, Aleix

论文摘要

深度神经网络(DNN)彻底改变了计算机视觉。现在,我们拥有达到顶部(性能)的DNN会导致许多问题,包括对象识别,面部表达分析和语义细分,但要命名。然而,达到最高结果的DNN的设计是非平凡的,大多数是通过越野越来越多的。也就是说,研究人员通常会得出许多DNN体系结构(即拓扑),然后在多个数据集上对其进行测试。但是,不能保证选定的DNN在现实世界中表现良好。可以使用测试集估算训练和测试集之间的性能差距,但是避免过度拟合测试的数据几乎是不可能的。使用隔离测试数据集可能会解决此问题,但这需要持续更新数据集,这是一个非常昂贵的冒险。在这里,我们得出了一种算法来估计不需要任何测试数据集的训练和测试之间的性能差距。具体而言,我们得出了许多持久的拓扑措施,这些度量可以确定DNN何时学习概括为看不见的样本。这使我们能够在看不见的样本上计算DNN的测试错误,即使我们无法访问它们。我们在多个网络和数据集上提供了广泛的实验验证,以证明所提出的方法的可行性。

Deep Neural Networks (DNNs) have revolutionized computer vision. We now have DNNs that achieve top (performance) results in many problems, including object recognition, facial expression analysis, and semantic segmentation, to name but a few. The design of the DNNs that achieve top results is, however, non-trivial and mostly done by trail-and-error. That is, typically, researchers will derive many DNN architectures (i.e., topologies) and then test them on multiple datasets. However, there are no guarantees that the selected DNN will perform well in the real world. One can use a testing set to estimate the performance gap between the training and testing sets, but avoiding overfitting-to-the-testing-data is almost impossible. Using a sequestered testing dataset may address this problem, but this requires a constant update of the dataset, a very expensive venture. Here, we derive an algorithm to estimate the performance gap between training and testing that does not require any testing dataset. Specifically, we derive a number of persistent topology measures that identify when a DNN is learning to generalize to unseen samples. This allows us to compute the DNN's testing error on unseen samples, even when we do not have access to them. We provide extensive experimental validation on multiple networks and datasets to demonstrate the feasibility of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源